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ABSTRACT

Herasymova D.O. Diffraction radiation from dielectric, silver and graphene
circular nanowire configurations excited by modulated electron beam. - Qualifying

research work in the form of manuscript.

This thesis is submitted in fulfillment of requirements for obtaining the degree of
Doctor of Philosophy in specialization #104 — Physics and Astronomy (10 - Natural
Sciences). - O. Y. Usikov Institute for RadioPhysics and Electronics NAS of Ukraine,
Kharkiv, 2023.

The thesis is devoted to the theoretical analysis of diffraction radiation (DR) from
a time-harmonically modulated beam of charged particles passing near to single and
multiple circular, in cross-section, nanowires, made of dielectrics, noble metals, and
graphene-covered dielectric wires. We consider several promising configurations of
such scatterers. Here, analysis of DR from single wires is important for understanding
the physics of the associated phenomena. This analysis is relatively simple as it needs
only the separation of variables and leads to explicit solutions. However, it has not been
performed so far and hence had to be done. Further, we consider DR from the dimers of
dielectric, metal and graphene-covered circular nanowires, i.e. the pairs of twin
(identical) nanowires, which we view as beam position monitors. Finally, we consider
the DR in the presence of finite-periodic gratings of such nanowires, as a model of the
orotron vacuum tube or the dielectric laser accelerator. As usual in the analysis of the
DR, we assume that the beam velocity is fixed and obtain, in each case, a classical time-
harmonic scattering problem for the known incident wave, which is the modulated-
beam field in the free space. This is a full-wave two-dimensional (2-D) boundary-value
problem for the Helmholtz differential equation in partial derivatives, with exact
boundary conditions, plus the condition of local power finiteness and the radiation
condition at infinity. In the case of noble-metal wires, we use the well-established

experimental data for the frequently — dependent dielectric permittivity of silver in the
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visible and infrared ranges. In the case of graphene-covered wires, we use the Kubo

formalism for the electron conductivity of graphene and the resistive-sheet boundary
conditions on the wire contours. To cast each of the considered problems to a well-
conditioned algebraic (i.e. matrix) equation, we use the separation of variables in local
coordinates and the addition theorems for cylindrical functions. This allows us to invert
analytically the single-wire part of the whole DR problem and to bring it to a Fredholm
second-kind matrix equation of the block type. The latter equation can be solved
numerically with controlled accuracy up to machine precision. Using such a trusted
numerical instrument, we perform systematic computations of the radiation power, the
absorption power, as function of the frequency. These quantities display the resonance
behavior caused by the excitation of the natural modes of the considered wires and their
arrays as open resonators. The modes are identified by visualizing the near and far field
patterns. To obtain better understanding of the natural modes, we perform the analysis
of associated eigenvalue problems. Additionally, we consider the lasing eigenvalue
problem for the graphene-covered wire dimer where we assume that the inner material
Is active, i.e. has gain, and determine the threshold conditions for the natural modes of
such a plasmonic nanolaser.

The goal of the work is to analyze the resonance effects in DR from the
mentioned above nanowire configurations excited by the harmonically modulated
beams of charged particles. In terms of applications, we study the dimer structures that
are most sensitive to variations in the beam trajectory and velocity and hence can be
exploited as beam monitors. Finite arrays of nanowires are analyzed as key components
of vacuum tubes and dielectric laser accelerators. In all cases, the resonance effects in
DR due to excitation of various natural modes play crucial role. Therefore, we focus our
analysis at a detailed study of how the resonances on the modes of dielectric wires,
plasmon modes of metal and graphene tubes, and lattice modes of periodic arrays
manifest themselves in the total scattering and absorption cross-sections and the far and
near field patterns.

To achieve these goals, the following tasks are solved:



4
- building adequate 2-D mathematical models of the scattering and

absorption of the harmonically modulated beam field by arbitrary ensemble of circular
nanowires or nanotubes,

- developing corresponding numerical algorithms for computation of the
scattering and absorption characteristics, as well as the fields in the near and far zones
of the studied structures,

- mastering the use of the commercial numerical codes, necessary to
confirm the theoretical results.

- establishing a general relationship between the DR scattering and
absorption characteristics that is the Optical Theorem, adapted to the DR of the
modulated electron beam,

- investigating how the resonances on the natural modes of dielectric wires,
plasmon modes of metal and graphene boundaries, and lattice modes of finite arrays
influence DR of a modulated electron beam,

- exploring the potentialities of beam position monitors, built on dimers of
resonance nanowires of different nature: high refractive-index dielectric wires, metal
wires, metal nanotubes and graphene-covered dielectric wires,

- investigating the natural modes of the dimer nanowire configurations
viewed as open resonators and determining the lasing threshold conditions for these
modes in the case of the presence of active regions.

The following new scientific results (i.e. those not published earlier, to our best
knowledge) have been obtained in the work:

- if the particle beam trajectory is shifted from the central (symmetric)
position between the twin nanowires, then the DR scattering and absorption spectra
display appearance of previously absent resonances, associated with the dimer
supermodes whose fields are orthogonal, in symmetry, to the beam field; the intensities
of new peaks are proportional of the beam displacement or its angular shift,

- the above-mentioned effect has been found for the high-Q supermodes of

the dimers of high refractive-index dielectric wires, thin noble-metal nanotubes, and



graphene-covered wires at the high enough values of graphene’s chemical potential,

- to observe the mentioned effect, the frequencies of the modes of different
azimuthal orders in single circular resonator, used in the dimer, have to be well
separated from each other; therefore, it is not observed for the plasmon modes of the
dimers of solid circular noble-metal nanowires,

- in the analysis of DR from sparse finite periodic arrays of many graphene-
covered nanowires, the dominant feature in the frequency spectra of DR powers are the
resonances on the plasmon modes of each wire and the lattice modes of the whole
array.; the latter resonance peak intensities strongly depend on the number of wires,

- The Optical Theorem (OT), known previously in the plane-wave scattering,
has been adapted to the DR effect; This entails introduction of the complex-valued
angles of incidence; the derived expression can be used for partial validation of
numerical codes (in the thesis, OT is satisfied with machine precision),

- in the analysis of the lasing threshold conditions of the modes of single
circular graphene-covered active wire, we have found that if the wire radius is larger
than 10 um, then the “parasitic” dielectric wire modes become competitive with the
“working” plasmon modes both in the frequencies and in the threshold values of the
gain in active region,

- iIf the separation between the wires in graphene-covered active circular
nanowire dimer becomes larger than their radius, then all four plasmon supermodes of
the lowest types come together in close quartets both in frequencies and thresholds; one
of the supermodes can have a lower threshold than the similar mode of the stand-alone

nanowire.

Keywords: nanowire, dielectric, graphene, nanolaser, electron beam, beam
position monitor, resonance, plasmon mode, grating mode, grating mode, self-excitation

threshold, active zone.



AHOTALIA

I'epacumosa /J[. O. JlndpakuiiiHe BHIPOMiHEHHSI HAa CTPYKTYpax 3 KpYIJMX
AieJIEKTPUYHMX, MeTajieBUX i TrpadgeHOBHUX HAHOHUTOK, IO 30YIKYHOThCA
MOAY/IbOBAHUM MOTOKOM eJIeKTpoHiB. — KBamidikamiiiHa HaykoBa Mpaiisi Ha IpaBax

PYKOIHUCY.

Hucepramiss Ha 3100yTTS HAyKOBOTO CTymHeHs JokTopa (imocodii 3a
cnemianpHicTIO 104 — ®i3uka Ta actponomisi (10 — IMpupoanudi Hayku). - [HCTUTYT

pagiodizuku Ta enekrpoHiku iM. O.4. YceukoBa HAH Ykpainu, Xapkis, 2023.

JucepTailito MpUCBSIYEHO TEOPETUUHOMY aHAII3Yy NUPPAKIIHHOTO BUTPOMIHEHHS
(IB) rapMOHIYHO MOJYJILOBAHOTO B 4Haci Myd4Ka 3apsi>KEHUX YACTUHOK, IO IMPOJITAE
no0an3y OAMHUYHUX KPYTJIHMX y TOMEPEYHOMY Mepepi3i HAaHOHUTOK, BUTOTOBIICHUX 3
JIEJeKTPHUKIB, OJJATOPOITHUX METAJIB 1 BKPUTUX TpadeHOM, a TAKOK CTPYKTYP 3 IXHBOTO
CKIHUEHHOT0 4ymcna. Po3rasgaroTbes KulbKa MEPCHEKTHUBHUX KOHPIrypaliid Takux
po3citoBauiB. AHamiz J[B Bii OKpeMHX HUTOK BaXJIMBUW JUIsI PO3YMIHHS (Di3UKU
noB’s3aHux sBuil. el aHami3 BIAHOCHO TPOCTHHM, OCKUIBKM TOTpeOye JIHiie
3aCTOCYBaHHSI METOJY PO3AIJICHHS 3MIHHUX 1 Belle J0 SIBHUX pimieHb. OJHAK TaKuil
aHaji3 Ie HIKUM He OyB BHKOHAHUW, TOMY € HEOOXIAHICTh Iie 3pooutu. Jlam
po3risiHyTO /IB Bin maliMepiB 3 HieNeKTpUKa, METaldy Ta BKPUTUX rpadeHoM, TOOTO Bij
nap OJHAKOBUX HAHOHHUTOK, SKI MH PO3IJISTAEMO SK MOJICI MOHITOPIB IOJIOKEHHS
myudka. Hapemrri, mu posrisgaemo JIB y IpUCyTHOCTI CKIHUEHHO-TIEPIOMYHOI PEITITKA
TaKUX HAHOHUTOK, SKa MOXE pO3TISAATACA SK MOJENb EIEKTPOHHO-BAKYyMHOTO
JDKepesa TUIy OpOTpoHa abo A1eIEKTPUYHOTO JIa3epHOTo MpHUCKOopioBaya. Sk 3a3Buyail
npu anamizi /IB, My BBakaeMo, 10 MIBUJKICTh Mydka € (DIKCOBAHOIO, 1 B KOXKHOMY
BUIAJKY OTPUMYEMO KJIACHUYHY 3a/ladyy FapMOHIMHOTO y 4aci PO3CISHHS ISl 3a/1aHOl
najaryvoi XBHJII, SIKa € IOJeM MOAYJIbOBAHOIO IydKa y BUIbHOMY mpoctopi. Lle

nBoBuMipHa (2-D) kpaiioBa 3ajada y CTpOrid MOCTAHOBILI ISl AMQPEPEHLIATBHOTO
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piBHSHHSA ['€IbMTOJIbIIa B YaCTUHHUX MOX1AHUX 13 BIAMOBIAHUMU KPaliOBUMH YMOBaMH,
a TaKOX YMOBOIO JIOKaJIbHOT CKIHYEHHOCTI MOTYXHOCTI Ta YMOBOIO BUIIPOMIHEHHS Ha
HECKIHYEHHOCTI. Y BUNAQAKYy HHUTOK 13 OJIarOPOJHUX METalliB MU BHKOPHUCTOBYEMO
IIUPOKO BIJIOMI EKCIIEpUMEHTaJIbHI JaHl JJI1 YaCTOTHO-3QJICKHOI JI1EJICKTPUIHOL
MPOHUKHOCTI cpibiia y BUIUMOMY Ta iH(ppadyepBOHOMY Jiana3oHax. Y BUIAIKy HHUTOK,
NOKpUTUX TpadeHOM, MU BUKOpPHUCTOByeMoO ¢opmanizMm Kybo s enekTpoHHOI
IPOBIAHOCTI IpadeHy Ta rPaHUYHI YMOBU PE3UCTUBHOTO THUITY Ha KOHTYpaxX HAHOHUTOK.
1106 mpuBeCTH KOXKHY 3 PO3TISHYTHX 3a7ad J0 J00pe 00yMOBIIEHOTO anreOpaidHOro
(TOOTO MaTPUYHOTO) PIBHAHHS, MU BUKOPUCTOBYEMO PO3/IJICHHS 3MIHHUX Y JIOKAJIbHUX
KOOpJIMHATaX 1 TEOpeMH JAOoJaBaHHSA Jisi nuiiHapuuHux ¢yukimii. Ile no3Bomnsie Ham
aHaJIITUYHO OOCPHYTHU TaKy YaCTUHY BCiel 3aj1a4i JIB, sika BiAmoBigae oHIN HAHOHUTII],
1 IPUBECTH 11 10 MAaTPUYHOTO PIBHSHHA Apyroro poay ®Ppenrosbma OGI0YHOTO THITY.
OcTaHHe pIBHSHHS MOKHA PO3B’SI3aTH YUCENIBHO 3 KOHTPOJBOBAHOIO TOUHICTIO, SIKY
MOXe OyTH [OBEIEHO A0 MAIIMHHOI TOYHOCTI. BHKOpHCTOBYHOUM Takuil HaaldHUN
YUCEJbHUN 1HCTPYMEHT, MH BHUKOHYEMO CHCTEMAaTHYHI OOYMCIEHHS TMOTY>KHOCTI
BUIIPOMIHEHHSI Ta MOTY>KHOCTI TOTJMHAHHA, K (yHKOid yacrotu. Lli BenuumHu
JE€MOHCTPYIOTh PE30HAHCHY MOBEAIHKY, CIPUYMHEHY 30YIKEHHSM BJIACHUX MOJ
PO3MVIIHYTUX HUTOK Ta IXHIX MAacuBIB SK BIJKPUTUX pe3oHaTopiB. Moau
1IeHTU(IKYIOThCS IIUIIXOM Bizyantizalii OMM>KHBOrO Ta AanbHboro modisi. o6 kpaie
3pO3yMITH BJIACTUBOCTI BJIACHHUX MOJI, MU BHKOHYEMO aHaJi3 BIAMOBIAHUX 3a7a4 Ha
BJacHl 3HaueHHA. KpiM Toro, Mu OKpeMoO pO3risgaEeMo Jla3epHy 3ajady Ha BJIACHI
3HAUEHHS JJIs OJMHWYHOI HUTKH Ta JaiMepy, MOKPUTHX TpadeHoM, [I&¢ MU
MPUITYCKAEMO, IO BHYTPINIHIA MaTepial € aKTUBHUM, TOOTO Mae€ TMiJACWICHHS, 1
BH3HAYAEMO TTOPOTOBI YMOBH JJIsI BIACHUX MOJI TAKOTO IJIA3MOHHOTO HaHOJIa3epa.
Memoto oOucepmayiiinoi pooomu € ananiz pe3oHaHcHHX edekTiB y JIB y
MPUCYTHOCTI KOH(Irypamii 3 HAHOHUTOK, IO 3rajaHl BHUIIE, SKI 30YIHKYHOTHCS
TapMOHIYHO MOJYJHOBAaHUMH TYYKaMHU 3aps/DKEHUX YaCTHHOK. 3 TOYKH 30Dy
3aCTOCYyBaHb, MM BHUBYA€EMO JaiiMEpH 3 HAHOHUTOK — II€ Takli KOHIrypari, siki €

HaWOUIbII YYTJIMBUMHU JO 3MIH TPAEKTOPIli Ta MIBUAKOCTI My4yKa, 1, OTKE, MOXYTh
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BUKOPUCTOBYBATHUCS SIK MOHITOPH TMOJIOKEHHS Myyka. CKIHUEHH] PEIITKH 3 HAHOHUTOK
I[IKaBl SK KJIIOYOBI KOMIIOHEHTH BaKyyMHHUX JDKEpel 1 MICJICKTPUYHUX JIa3epHUX
MPHUCKOPIOBAUiB. Y BCIX BHIIAJKaX HAWOUIbII BaXXJIHMBY POJIb BIAITPArOTh PE30HAHCHI
edextu B JIB 3a paxyHOK 30yJ’KEHHS Pi3HUX BJIIACHUX MOJ. TOMY MU 30CEpEIKyEMO
HaIll aHajli3 Ha JETaJbHOMY BHBUYEHHI TOTO, SIK PE30HAHCH HAa MOJAX Ai1eIECKTPUYHUX
HUTOK, IJIA3MOHHUX MOJAaX MeETaleBHX 1 rpadeHOBUX TPyOOK, a TaK0X TIPaTKOBHX
MOJIaX TEPIOJUYHUX PENITOK MPOSBISAIOTHCS B TOBHUX IEpepi3ax pO3CIsTHHA Ta
MOTJIMHAHHSA, & TAKOX y JAIEKUX 1 OJMKHIX MOJISX.

JU1s nocATHEHHs MOCTaBJICHUX I[JIeH BUPIIIYIOTHCS TaKl 3aBAAHHS!

- moOyoBa ajiekBaTHUX 2-D mMaTemMaTUUHUX MOJENEH PO3CISHHS Ta MOTJIMHAHHS
TapMOHIYHO MOAYJIHOBAHOTO TOJS IMyYKa YACTHHOK JOBUIBHUM aHCamMOIeM KpyTroBHX
HaHOHUTOK a00 HAHOTPYOOK;

- po3po0OKa BiAMOBIIHUX YUCEIbHUX AJTOPUTMIB JJIs1 PO3PaXyHKY XapaKTEPUCTHK
PO3CISIHHSI Ta MOTJIMHAHHS, & TAKOX TOJIIB y OJMKHIN Ta JaJIbHIN 30HAX;

- HAaBYaHHS 3aCTOCYBaHHIO KOMEpPLIMHMX YHCIOBUX KOJIB, HEOOXIAHMX JUIf
MIATBEPAKCHHS TEOPETUUYHHUX PE3YJIbTATIB,;

- BCTAQHOBJICHHS 3arajbHOro 3B'SI3KY MDK XapaKTE€pUCTUKaMH pO3CISHHS Ta
MOTJIMHAHHS, SIKUM HA3WBA€THhCSA «ONTHUYHOKO TEOPEMOIO», 10 aganTtoBaHa ao /IB
MOJIyJIbOBAHOTO €JIEKTPOHHOTO MYyYKa,;

- JOCIIPKEHHSI TOro, SIK PE30HAHCH Ha BJIACHHUX MOJaX IICJIEKTPUYHMX HHUTOK,
MJIa3MOHHUX MOJIax METaleBUX 1 rpad)eHOBUX OOOJIOHOK, & TaKOX I'PAaTKOBHX MOAax
BIUIMBAIOTH Ha JIB MOAYJIbOBAHOIO €JIEKTPOHHOTO MIYYKa,;

- BHUBYEHHS MOJJIMBOCTEH MOHITOPIB IMOJIOKEHHA ITyyKa, MOOyIOBaHUX Ha
JaiiMepax 3 PE30HAHCHUX HAHOHHUTOK PI3HOT NPUPOIU: MiCNEKTPUYHUX HUTOK 3
BUCOKUM TIOKa3HUKOM 3aJIOMJICHHSI, METaJleBUX HUTOK, METaJeBUX HAHOTPYOOK 1
JEIEKTPUYHUX HUTOK, TOKPUTHUX IpadeHoM;

- JIOCIIJKEHHS BJIACHUX MOJ JaiiMepiB 3 HAHOHMUTOK, SIKI PO3TJIAIAIOTHCS SIK
BIJIKpUTI PE30HATOPHU, Ta BU3HAYEHHS IMMOPOTOBUX YMOB TEHepallli mux Moj y pasi

HAABHOCTI aKTUBHUX 00JIACTEN.



Y po60Ti OTpUMaHO HACTYITHI HOBi HAYKOBi Pe3yJIbTATH:

- AKOI0O TPAEKTOpisl IMy4YKa YaCTMHOK 3MIIIYETbCS 3  IEHTPAIBHOIO
(CMMETpUYHOTO) TOJIOKEHHS MK JBOMa HAHOHUTKaMU JalMepy, TO B CIEKTpax
po3cisiHHA Ta morjiHaHHA J[B 3 ABIsIOTBCS paHillie BiACYTHI pe30HAHCH, MOB’s3aH1 3
CylepMoJaMu JaiiMepy, MOJis SIKUX OPTOTOHANIbHI, B CEHCl CUMETpIii, O TMOJS IMy4Ka,;
IHTEHCUBHOCTI HOBUX PE30HAHCHHMX ITIKiB MIPOIOPIIiiiHI 3CYBY ITyUKa,

- BUIIEBKa3aHUU €PEeKT BUSABICHO JJII BUCOKOJOOPOTHUX CyNEepMOJ AailMepiB 3
TIENEKTPUYHUX HHUTOK 3 BEJIIMKUM IMOKAa3HUKOM 3aJIOMJICHHS, TOHKHX HAHOTPYOOK 3
OJIarOpoJHUX METalIB 1 HUTOK 3 IpaeHOBUM MOKPUTTSAM IMpPH JOCUTh BHUCOKHX
3HAYEHHSX XIMIYHOTO MOTEHIIany rpadeny;

- ISl CIIOCTEPEKEHHS 3a3HaYEHOT0 €(eKTy, YACTOTH MOJ| PI3HUX a3UMyTalbHUX
MOPAJIKIB B OJIHOMY KPYTOBOMY PE30HATOpl, BUKOPUCTAHUX Yy JaiiMepi, MOBUHHI OyTH
no0pe BiJaneHl oJHa BiJ OJIHOI, OTXKE, 116 HE CIIOCTEPIraeThCsl JJIsl TIIa3MOHHUX MOJ
JTalMepiB 3 CYHIIBHUX KPYIJIMX HAHOHUTOK 3 OJIaropoJHUX METaNiB;

- npu aHami31 /IB Bii CKIHYEHHHUX PENITOK (MEPIOAUYHUX CTPYKTYp) 3 OaraThox
HAHOHWUTOK, BKPUTHX TpadeHOM, y YaCTOTHUX CIEKTpax MOTyxHocTi (B momiHyOThH
pE30HaHCH Ha IUIa3MOHHHUX MOJIaX KOKHOI HHMTKM Ta Ha TPAaTKOBHX MOJax BCIEl
PELITKY; IHTEHCUBHICTh T'PATKOBUX PE30HAHCIB CYTTEBO 3AJIEKUTH BiJl KUUIBKOCTI HUTOK;

- «ONTUYHY TEOPEMY», BIIOMY 3 TE€OpIi pPO3CISIHHS IJIOCKUX XBWJb, adalTOBAHO
1o epekry JIB; 11e BUMarae BBEJICHHs 10 pO3IJIAIaHHS KOMIUIEKCHUX KYTIB HaJiHHS JIs
MoJIsi TIy4YKa EJIGKTPOHIB; BUpa3, IO OTPUMAHO, MOXHA 3aCTOCYBAaTH Jii YaCTKOBOI
Bepudikaiii 4ucenbHUX pe3ynbTariB, (y Aucepraiii el BUpa3 3aJ0BOJBHSIETHCA 3
MAIIIMHHOI TOYHICTIO);

- BUSIBJICHO, IO SIKIO PajJilyC OJAMHUYHOI KPYroBOi aKTMBHOI HUTKH, TOKPHUTOI
rpaderom, € meHmuM 3a 10 um, To «poboUi» mIa3sMoHHI MoK TpadeHOBOI 00OIOHKU
MaloTh 3HAYHO HM)K4Yl YaCTOTH 1 MOPOrOBl 3HAYEHHS MOCWJICHHS B aKTHBHIM 00JacTi,
HIK «apa3uTHD) JIeNEeKTPUYHI MOJM HUTKH; y OUIbII TOBCTUX HUTKAX BCl BKa3aH1
MOJIY CTalOTh KOHKYPEHTOCIIPOMOKHUMH;

- SIKILIO BIJICTAaHb MIDK HUTKaMU Yy JaiiMepi 3 IBOX MOKPUTUX Ipa@€HOM aKTHUBHUX
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HAHOHUTOK CTa€ OUIBIIOK 3a IXHIM pajiyc, TOAl BCl YOTUPH TUIA3MOHHHUX CYNEPMOJIH
KO>KHOTO TUITYy YTBOPIOIOTH TiCHI KBapTETH 3 OJM3bKMMH YAaCTOTAMH 1 TOPOTaMH; OJIHA 3
CymmepMoji MOXE€ MaTd TMOpIr, HIKYWKA 3a MOpIr MOMIOHOT MOAM IS OJUHUYHOL

HAHOHUTKU.

Knwouoei cnosa: nanoHUTKa, J1€NEKTPUK, TpadeH, HaHOJa3ep, Iy4OK €JIeKTPOHIB,
MOHITOP TIOJIO)KEHHS IIy4yKa, pPE30HAHC, IJJa3MOHHA MOJa, TpaTKoBa MoOJa, IOpIr

CaMO36y,Z[)KeHH$I, AKTHBHAa 30HA.
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INTRODUCTION

Justification of the choice of research topic. As known, charged particles, such
as electrons, radiate electromagnetic waves when moving through the boundary
between material media or inside such a medium — this is called the transition or the
Cherenkov radiation, respectively. The radiation of electrons moving in vacuum without
crossing any material boundaries has also attracted the attention of researchers since
1950s. The most known example of such effect is the Smith-Purcell radiation [1-13]; it
Is associated with an electron beam flowing over a periodic grating, for instance, ruled
on a metal surface, across the grooves. Still the Smith-Purcell effect (SPE) is only a
particular case of more general phenomenon: the radiation of the surface and
polarization currents induced on the metal and dielectric objects by the electron beams
flowing in their vicinity however without touching them. This type of electromagnetic-
wave radiation is commonly called the diffraction radiation (DR) [5-14].

Microwave-range DR is already used as a convenient method for non-invasive
diagnostics of beams in accelerators, i.e. for remote sensing of the position and velocity
of the particle beams [10-14]. Such devices are commonly referred to as beam position
monitors (BPM). Today, the development of BPM can be extended to the optical range,
because the emergence and rapid development of nanotechnology opens the way to
create ensembles of nanosized optical scatterers with controlled shape and location [15-
18]. Nanoscale components introduce very little perturbation to the beam, its velocity
and trajectory, and therefore its field can be considered fixed. Therefore, the analysis of
the DR effect can be performed within the classical theory of electromagnetic (EM)
wave scattering, i.e. as the scattering of the given wave by the objects of known shape
and material parameters.

Measuring the DR intensity in the near or far zone, one can monitor the electron-
beam parameters [13, 14]. As BPM is a specific sensor, optimisation of its performance
requires finding a favourable combination of its element shapes and materials. Here, the

use the resonance effects is a promising approach. A resonance enhances the DR
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intensity proportionally to the squared Q-factor of the resonating mode. In the

microwave range, various coaxial metallic hollow cavities integrated with the drift tubes
are common. This approach can be extended to the THz and IR ranges if suitable
resonators shaped as sub-wavelength scatterers are found. One possible approach is the
use of high-refractive-index materials; however, available today dielectric materials
have refractive indices within several dozens, so that the resonances on their lowest
modes entail only moderately sub-wavelength dimensions. The other approach uses the
noble-metal scatterers, able to support the surface plasmon modes in the visible range
[19, 20]; however, these modes have rather low Q-factors, due to high losses in noble
metals. The way out can be seen in the exploitation of the plasmon modes on the
patterned graphene or graphene-coated scatterers [21, 22]. Note that such configurations
are already studied as the elements of promising IR and THz range sensors of the host-
medium refractive index and tuneable filters, absorbers, scatterers and antennas [23-27].
The dielectric and silver scatterers were studied, in particular, in the many works.
Graphene is new material that consists of a monolayer or a few such layers of
graphite, i.e. has sub-nanometre thickness. It has remarkable properties like
transparency in the visible range, mechanic strength, and good electron conductivity in
the THz and infrared (IR) ranges. The conductivity is a function of the temperature,
electron relaxation time, frequency and chemical doping. Graphene can support the
plasmon guided wave at the THz and IR frequencies that makes its electromagnetic
properties similar to noble metal ones in the visible-light range, however, at much lower
frequencies. What is principally new, graphene conductivity and hence plasmon effect
can be tuned using the DC bias, which translates to the chemical potential [21,22].
Usually graphene is attached to flat dielectric substrates, however, now curved
substrates attract an increasing attention [23,24]. Recently, graphene-covered nanowire
fabrication and synchrotron nanospectroscopy measurements have been reported [25].
Note that circular-wire dimers coated with graphene have been studied with commercial
codes in the context of field forces [26] and cloaking [27], and with in-house code based

on the local Fourier expansions in the analysis of eigenfrequencies. However, all these
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works considered the plane wave as the incident field.

Thus, the task of studying the DR effect in the visible, IR and THz ranges for
nanoscale structures of circular wires of dielectric, metal and graphene materials is
timely.

The object of research is the phenomena of the scattering and absorption of the
modulated electron beam field by configurations of finite-number circular nanowires
and nanotubes, as well as the eigenvalue problems for such circular open resonators
with graphene cover.

The subject of the study is the resonance and spectral characteristics of the EM
field scattering and absorption by finite configurations of circular nanowires and
nanotubes, excited by the modulated beams of charged particles, as well as the
eigenmodes of such nanowire configurations.

Research goals and tasks. The goal of this work is to analyze the DR effect for
various structures of circular nanowires and nanotubes made of dielectric, metal, and
graphene. Here, keeping in mind BPM applications, we look for the structures that are
the most sensitive to variations in the trajectory of the beam and to the changes in its
velocity. Since the sensitivity of BPM usually improves due to resonances, our analysis
includes a detailed study of how the resonances on the modes of circular dielectric
wires, plasmon modes of noble-metal and graphene wires and tubes, and lattice modes
of finite arrays of wires manifest themselves in DR of modulated electron beam.

To achieve these goals, the following tasks are set:

* build a 2-D mathematical model for the scattering of the field of a beam of
particles from arbitrary ensemble composed of a finite number of dielectric or silver
wires or tubes of circular cross section;

* develop a numerical algorithm for calculating the characteristics of the DR-
caused scattering and absorption, as well as fields in the near and far zones of the
studied structures;

« investigate how the resonances on the modes of dielectric wires, plasmon modes

of metal and graphene wires, and lattice modes of the grating made of graphene-covered
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wires influence the DR of a modulated electron beam;

* establish a relationship between the DR-caused scattering and absorption
characteristics and the far-field angular DR that accounts for the configuration of the
scatterers and for the beam trajectory position (modified Optical theorem);

» develop recommendations for an optimal design of the optical BPM;

* calculate the DR problems with commercial codes to validate the theoretical
results.

These tasks are accomplished in 5 chapters of the work.

The first chapter discusses (i) the main methods of analysis of wave scattering by
circular dielectric cylinder configurations, (ii) representation of the incident field as the
harmonically modulated charged particles beam field, (iii) complex permittivity of
silver as a function of the frequency, (iv) description of the graphene conductivity via
the Kubo formalism, (v) scattering and absorption characteristics and beam field
adapted Optical Theorem, and (vi) Lasing Eigenvalue Problem statement. Here, the
method review includes the Discrete Dipole Approximation method, Finite-Difference
Time-Domain method, method of separation of variables and Method of Analytical
Regularization.

The second chapter is dedicated to the statement of the scattering problem for a
finite number of circular wires excited by the electron beam and numerical investigation
of the DR-caused scattering and absorption characteristics in the visible range for a
single dielectric nanowire and dimer of twin dielectric nanowires.

The third chapter includes analysis of the DR-caused scattering and absorption
characteristics for a stand-alone circular silver nanowire and twin circular silver
nanowires and nanotubes in the visible range.

In the fourth chapter, the DR-caused scattering and absorption characteristics in
the THz range are numerically investigated for a stand-alone circular dielectric
nanowire covered with graphene, twin graphene-coated nanowires configuration and
finite array of circular graphene-covered dielectric nanowires.

The fifth chapter presents the implementation of the Lasing Eigenvalue Problem
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(LEP) approach for study of the EM field in the presence of a single circular quantum

wire (QW) made of a gain material and wrapped in graphene cover and a dimer of two
identical graphene-covered QWs, at the threshold of stationary emission.

Research methods. The research methods include the theory of 2-D boundary-
value problems of classical electromagnetics which consists of the following: the
Helmholtz equation with corresponding wavenumber in each partial domain, the
boundary conditions at the wire cross-sectional contours, the Sommerfeld radiation
condition at infinity, and the condition of local power finiteness. These conditions
guarantee the uniqueness of the boundary-value problem solution. As for the graphene
covers, they are assumed to be zero-thickness conducting tubes. Here, the Kubo
formalism is applied to characterize graphene’s complex-valued surface impedance and
the resistive-type boundary conditions are requested on the graphene. Further, we use
the circular shape of the nanowires and apply the field expansions in the Fourier series
in local polar coordinates of each wire, combined with the Graf addition theorem for the
cylindrical functions. On substitution into the boundary conditions, this leads to the
Fredholm second kind matrix equations for the field expansion coefficients. Therefore,
such a technique belongs to the family of the methods of analytical regularization
(MAR). The Fredholm nature guarantees that the solutions of the truncated matrix
equations converge to the exact solutions if the truncation number gets larger. It is
expected that such a code will outperform, in speed, the existing commercial codes in
hundreds of times and enable easy control of the accuracy of computations. We carry
out computations of DR-caused scattering and absorption characteristics, as well as near
and far field patterns, especially at the resonance frequencies.

Scientific novelty of obtained results. The following new results have been
personally obtained by the author:

. if the particle beam trajectory is shifted from the central (symmetric)
position between the twin nanowires, then the DR scattering and absorption spectra
display appearance of previously absent resonances, associated with the dimer

supermodes whose fields are orthogonal, in symmetry, to the beam field; the intensities
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of new peaks are proportional of the beam displacement or its angular shift,

. the above-mentioned effect has been found for the high-Q supermodes of
the dimers of high refractive-index dielectric wires, thin noble-metal nanotubes, and
graphene-covered wires at the high enough values of graphene’s chemical potential,

o to observe the mentioned effect, the frequencies of the modes of different
azimuthal orders in single circular resonator, used in the dimer, have to be well
separated from each other; therefore, it is not observed for the plasmon modes of the
dimers of solid circular noble-metal nanowires,

o in the analysis of DR from sparse finite periodic arrays of many graphene-
covered nanowires, the dominant feature in the frequency spectra of DR power are the
resonances on the plasmon modes of each wire and the lattice modes of the whole array;
the latter resonance peak intensities strongly depend on the number of wires,

o the Optical Theorem (OT), known previously in the plane-wave scattering,
has been adapted to the DR effect: that entails introduction of the complex-valued
angles of incidence; the derived expression can be used for partial validation of
numerical codes (in the thesis, OT is satisfied with machine precision)

o in the analysis of the lasing threshold conditions of the modes of single
circular graphene-covered active wire, we have found that if the wire radius is larger
than 10 pum, then the “parasitic” dielectric wire modes become competitive with the
“working” plasmon modes both in the frequencies and in the threshold values of the
gain; otherwise, the plasmon mode frequencies and thresholds are much lower.

o If separation between the wires in graphene-covered active circular
nanowire dimer becomes larger than their radius, then all four plasmon supermodes of
the lowest types form tight quartets; one of the supermodes can have a lower threshold
than the similar mode of the stand-alone nanowire

Practical value of obtained results. The proposed method and the developed
numerical algorithms have controlled accuracy and can be applied for the trusted and
time-efficient computation of the DR-caused scattering and absorption by nanowire

configurations made of dielectric, noble-metal and graphene, using the moderate



24
computer hardware.

The obtained results of numerical analysis of the DR-caused scattering and
absorption characteristics versus the frequency and other parameters, the far and near
field patterns of the wave emission from charged particle beam moving near various
nanowire scatterers and gratings of them have fundamental significance. They have also
a wide range of applications including the BPM and DLA designs. The analysis of
thresholds conditions for the plasmon modes of the considered in the thesis
nanolasers can help in the creation of new, more efficient sources of waves.

The developed computational codes of the main scattering and absorption
characteristics permit using them as a core of the software for numerical optimization of
optical configurations, key elements of which are circular nanowires.

Personal contribution of the author. The main results presented in the
dissertation were obtained by the author. The contribution to the co-authored works in
[A1-A25] consists in the derivation of the basic equations, the development of
numerical algorithms, the writing of the corresponding codes, as well as in the
systematic calculation of the DR scattering and absorption characteristics, the DR
patterns in the near and far zones, and in the interpretation of the obtained results. All
conference papers were presented by the author personally.

Dissemination of results. The results of the work were presented and discussed
at the following scientific seminars: IRE NASU (Prof. P. M. Melezhyk), Institut
d'Electronique et des technologies du numérique IETR, Universite de Rennes 1, France
(Prof. R. Sauleau), Institute of Experimental Physics, University of Wroclaw, Poland
(Prof. A. Szczepkowicz), and The Institute of Spintronics and Quantum Information
(I1SQI), Adam Mickiewicz University in Poznan, Poland (Prof. J. Klos). Besides, they
were presented at the following international conferences, workshops and symposia:

o IEEE Conference on Mathematical Methods in Electromagnetic Theory
(MMET), Kyiv (2018);

. IEEE International Workshop on Direct and Inverse Problems of
Electromagnetic and Acoustic Wave Theory (DIPED), Thilisi (2018);
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o IEEE International Conferences on Electronics and Nanotechnologies
(ELNANO), Kyiv (2019, 2020, 2022);

o European Microwave Conference in Central Europe (EuMCE), Prague
(2019);

. IEEE Ukraine Conferences on Electrical and Computer Engineering

(UKRCON), Lviv (2019, 2021);

o European Microwave Conferences (EUMC), Paris (2019), Utrecht (2020),
London (2021), Milan (2022), Berlin (2023);

o IEEE International Conference on Microwaves, Communications,
Antennas, and Electronic Systems (COMCAS), Tel Aviv (2019);

o European Conferences on Antennas and Propagation (EuCAP),
Copenhagen (2020), Madrid (2022), Florence (2023);

o IEEE Ukrainian Microwave Week (UkrMW): IEEE Microwave, Radar and
Remote Sensing Symposium (MRRS), Kharkiv (2020);

o IEEE/MTT-S International Microwave Symposium (IMS), San Diego
(2023).

Publications. The results of research have been published in 25 refereed papers
indexed in Scopus, including 6 papers in international journals [A1-6] and 19 papers in
the proceedings of international conferences [A6-25].

Relation to scientific programs, projects and grants. The research within
this thesis has been performed in the Laboratory of Micro and Nano Optics of the
Quasioptics Department of IRE NASU, in the framework of the following projects:

1. Research project of NASU "Development and application of methods of
optics and quasioptics for generation and transforming the electromagnetic waves of
terahertz, infrared and visible ranges", code "Oreol-1", # 0117U004036 (2019-2022)

2. Research project of NASU "The research of interaction processes of
electromagnetic radiation in terahertz, infrared and visible ranges with various natural or
artificial materials, mediums and structures", code "Oreol-2", # 0122U001710 (2022-
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4. Competitive project of the National Research Foundation of Ukraine
(NRFU) "Electromagnetic modeling of micro and nano lasers”, code "Sonata",
#2020-02-0150 (2020-2022)

5. Joint research project with Universite de Rennes 1 — Programme of the
Ministry of Education and Science, Ukraine and the Ministry of Eurapean and Foreign
Affairs, France, "Terahertz graphene-based metasurfaces and transmitarrays"”, code
"Dnipro", #0119U102172 and #0120U104419 (2019-2021)

6. Competitive project of Programme d’aide a 1I’Accueil en Urgence des
Scientifigues en Exil (PAUSE), Universite de Rennes 1, Rennes, France, "Diffraction
radiation nanoantennas for electron beam position sensing and terahertz source
development™ (2023)

It has been also partially supported by the following scholarships of the
international professional societies:

. Project "Smith-Purcell terahertz radiation from a beam of particles moving
above a grating of graphene-covered dielectric rods", IEEE Microwave Theory and
Techniques Society Fellowship, 2023

o Project "Diffraction radiation antennas based on graphene covered
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CHAPTER 1 LITERATURE REVIEW AND RESEARCH METHODS

1.1 Methods of analysis of wave scattering from circular dielectric cylinders

Since the topic of the dissertation is the theoretical study of the phenomenon of
the modulated electron-beam field scattering from the structures made of circular wires
of various materials, in this section we present a short overview of the main methods of
the full-wave modeling of the 2-D scattering from such objects.

The problem of time-harmonic EM wave scattering and absorption by circular
dielectric cylinders can be analyzed using several methods. Here are a few existing
methods commonly employed,

- Discrete Dipole Approximation (DDA): The DDA is a numerical technique
commonly used to analyze the light scattering from particles. It represents the particle as
a cluster of polarizable dipoles and solves the scattering problem by calculating the re-
radiation of these dipoles at the given incident light. The DDA can be used to
investigate the scattering and absorption properties of circular dielectric cylinders and
provides information about the scattered field, extinction, and absorption cross-sections.

Originally, the DDA was proposed by Purcell and Pennypacker, who substituted
the scatterer with a collection of point dipoles [28]. The interaction between these
dipoles and the incident field results in a system of linear equations, which is solved to
determine the dipole polarization amplitudes [29]. All the necessary scattering
quantities can be derived from these polarization amplitudes. Later on, DDA was
developed and popularized by Draine and others, including developing the free-to-
public computer code DDSCAT [30-33]. Then, Goedecke and O’Brien showed another
way of deriving the DDA: they discretized the volume electric field integral equation
by means of dividing their scatterer into fractional cubical sub-volumes [34]. It is worth
noting that the final equations resulting from both approaches to derive the DDA are
essentially identical [28]. There are DDA equivalent methods developed by others

researchers in the same time. They were called the volume integral equation formulation
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and the digitized Green’s function [34, 35]. Additionally, there are various methods of

moments (MoM) which are similar to DDA, due to the fact that they are also based on
the volume integral equations for the EM fields [36, 37]. In contrast, DDA was simply
explained by Yurkin and Hoekstra as substituting any scatterer with a set of dipoles that
interact with each other [28].

All DDA methods have different nature of errors. In a number of works, the
origin of errors in the DDA was examined in the attempt to separate and compare shape
and discretization errors [38-42]; however, no definite conclusions were reached. The
uncertainty was due to the indirect (empirical) methods used that have inherent
interpretation problems.

We would like to emphasize that DDA convergence, with larger number of the
dipoles, cannot be established mathematically. In the case of volume integral equations,
this relates to their singular nature. Overall, this method has gained popularity in the
field of light scattering and has been extensively developed by multiple authors; there is
a large amount of reviews on both the theory and numerical aspects [43-45].

- Finite-Difference Time-Domain (FDTD) Method: The FDTD method is a
numerical technique used to solve Maxwell's equations and simulate the propagation of
light through various structures, including dielectric cylinders. This technique has
proven to be a universal and relatively simple computational method for solving the
scattering of EM waves from wide class of scatterers, especially those with complex
geometries and non-uniform compositions [46]. It discretizes the space and time
domains and numerically solves the Maxwell differential equations by replacing the
derivatives with finite differences. That provides valuable insights into the diffraction
patterns, scattering efficiencies, and field patterns.

The method was initially introduced by K. Yee and subsequently enhanced by
other researchers in the early 1970s [47]. The uniqueness of Yee's concept lies in the
spatial allocation of electric and magnetic field components and the time-stepping
approach for the procedure evolution. The method was not wildly recognized until the

1980s, when the absorbing boundary conditions of high quality were derived. Then
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Taflove, Kunz, Holland and other engineers and scientists worked on FDTD and

demonstrated a number of its advantages, which provided the popularity of FDTD [48-
50]. By default, it is considered that FDTD accuracy is improved (i.e. its error is
reduced) by a denser meshing. However, the spatial and temporal steps (cell sizes) in
FDTD cannot be arbitrarily small. This is because denser meshing quickly leads to
prohibitively large-size matrices and, hence, huge computation time.

Over the past years, the FDTD technique has found application in solving
interactions between obstacles and EM waves in various problems, including antenna
scattering, microstrip structures numerical modeling, and the study of EM absorption by
human body tissues [51-55].

Still, FDTD needs placing a time-dependent (pulse) source at one point of
computational domain and computing the time-dependent EM field at another point.
Therefore, the results depend on the “goodness” of choice of these points.

Besides, FDTD simulations have limitations on the maximum allowable temporal
step. If the step size is too large, the algorithm yields unstable results, rendering the
obtained values meaningless and prone to rapidly approaching infinity. Additionally,
FDTD algorithms often impose significant demands on computational resources,
particularly when dealing with open-domain or resonant problems [56]. This limits
technique integration with optimization routines. However, these requirements are
considerably diminished when using 2-D versions of FDTD [57].

Further, FDTD codes suffer from another inherent drawback: in both 2-D and 3-
D, the accuracy of the analysis can suffer near high-Q natural resonances [58,59]. This
issue is crucial for dielectric scatterers, which we consider in this dissertation. If it is
necessary to obtain not a time but a frequency dependence of the field, then the Fourier
transform has to be used. This implies truncation of the integration domain, in time, at
certain finite value. The choice of that value is important, however, it cannot be too
large to make the computations limited by, at least, minutes and small hours. This
makes correct computing of resonances with Q > 10° extremely time-consuming.

Recently, the numerical results comparison verified the satisfactory accuracy of FDTD
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when used outside the high-Q resonances, while also demonstrating a significant

increase in computational error near these resonances [60]. Note that complete
elimination of these errors is not achieved even with denser meshing and,
mathematically, the convergence of FDTD codes cannot be guaranteed.

There is big amount of investigations on improving the performance of FDTD
and its agreement with the experiments [61-64]. Currently, owing to its versatility, the
method serves as the foundation for commercial and open-source software packages
used for analyzing, solving, and simulating a wide range of physical and engineering
problems.

- Separation of variables for single wire (sometimes called Mie theory): the
concept of separating the variables was initially introduced by Lord Rayleigh (J. Strutt)
in 1881 in the analysis of waveguides [65]. This is a classical approach, which provides
a rigorous mathematical framework for calculating the scattering and absorption
properties of dielectric cylinders and other simple-shape objects. It takes into account
the size parameter (the ratio of the wavelength of light to the particle size) and yields
detailed information about the angular distribution of scattered light, extinction, and
absorption efficiencies. Note that Rayleigh used this method in the case of 2-D domains
with circular boundaries.

As known, EM waves obey the Maxwell equations [66]. The separation of
variables solution to the canonical Maxwellian problem of the scattering of tome-
harmonic EM waves by a spherical object in the frequency domain was presented by
Mie in 1908 [67]. The paper [68] contains a generalization of Mie theory to the time
domain. However, almost at the same time as Mie's work, Lorentz and Debye
developed their own analytical solutions for the spherical scatterers [69,70]. Moreover,
Logan in 1965 found and wrote a review of all "lost" pieces of knowledge of
contributed authors in this theory [71]. The limited knowledge about these alternative
works and complete oblivion of Rayleigh role by the 20" century have led to the

commonly used terms "Mie series,” "Mie approach,” or "Lorentz-Debye-Mie theory"

being attributed to all separation of variables solutions. In contrast to the classical
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Lorentz-Mie-Debye theory (LMDT), which primarily examined the scattering of plane

waves by stand-alone objects, recent research has centered around the Generalized
Lorentz-Mie theory (GLMT), which studies the time-harmonic wave scattering by
multiple spheres and spheroids [72-75].

Mathematically, the method of separation of variables is a commonly employed
approach for solving the partial differential equations. It assumes that the solution can
be expressed as a product of several functions, each dependent on a single independent
variable. Following this assumption, it is possible to derive precise analytic solutions for
problems concerning the scattering of EM waves by objects whose surfaces align with
coordinate surfaces in certain curvilinear orthogonal systems. The exact solutions for
the scattering from circular cylinders can be obtained by implementing this method,
where the terms are products of cylindrical functions of the radial coordinate and
trigonometric function of the azimuth coordinate, although they take the form of infinite
series [77-80]. However, these series are always convergent and simple rules for the
choice of their truncation order can be established.

The separation of variables method is not applicable to more complex than
canonical shapes, such as circular cylinders and spheres, including layered ones. In fact,
this is the only disadvantage of the method.

- Method of Analytical Regularization (MAR) based on single-wire part
inversion. The numerical methods based on reducing the EM wave scattering problem
associated with multiple circular cylinders to an infinite matrix equation, which is an
equation of the second kind, have been known since long ago [77-79, 81-85]. However,
the associated algorithms diverge as the order of matrix truncation increases. Sologub
was apparently the first who concluded the need to cast the equations of the second kind
to the Fredholm form [86]. Later and independently, Bogdanov came to the same
conclusion in [87]. Fredholm's theory can be used for operator (integral or infinite-
matrix) equations where the operator is a sum of a continuously invertible operator and
a completely continuous operator [88]. This entails that for such operator equations, the

existence of the exact solution and the convergence of the numerical code can be
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mathematically established [89].

As formulated in [90], MAR is a collective name for the methods, which involve
transformation of a first-kind or strongly-singular second-kind operator equation,
usually derived in the wave-scattering theory, into a Fredholm second-kind operator
equation — say, integral equation with a smooth (square-integrable) kernel. This ensures
the point-wise convergence of typical discretization schemes. As this is achieved by
analytically inverting the singular component of the original equation, MAR is also
sometimes called the semi-inversion method. The term MAR was firstly introduced by
Muskhelishvili in [91]. It also should be acknowledged that the concept of MAR was
developed by the 19" century mathematicians: Hilbert, Poincare, and Noether, in the
theory of singular integral equations.

Furthermore, other functional methods such as Titchmarsh, Wiener-Hopf,
Cauchy, Abel, and Riemann-Hilbert Problem techniques can be employed to achieve
the analytical inversion of the static or high-frequency component of the integral
operator. In certain problems, both the analytical regularization and discretization of the
integral equation are carried out concurrently, resulting in methods known as analytical
preconditioning [92].

If the convergence is ensured (by the Fredholm theory), the accuracy of
computations can be effectively controlled by adjusting the truncation order of the
matrix. In theory, the error can be minimized to the machine precision, a level of
accuracy that is beyond what is achievable with commercial codes currently available.

The MAR methods, along with others, offer powerful tools for analyzing EM
wave scattering from circular cylinders, enabling researchers to investigate scattering
phenomena, optimize device designs, and understand the emission of waves from
nanoscale structures. In this dissertation, the author applies the method of separation of
variables to the analysis of the scattering from simple single-cylinder configurations.
The MAR is applied to more complicated, multiple-cylinder structures, based on the

analytical inversion of the single-cylinder part of the full problem.
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1.2 Field of a harmonically modulated beam of charged particles

In all problems studied in this work, the incident wave is the field of the time
harmonically modulated electron beam, therefore, this section is devoted to the

explanation of its presentation.
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Fig. 1.1 Cross-section sketch of time-harmonically modulated beam of charged

particles

Consider an unbounded two-dimensional (2D) flat electron beam moving along
the straight trajectory, with a fixed velocity v=pc(/f < 1), see Fig. 1.1. The charge

density function, if modulated in time in a harmonic manner, can be presented as

p=pd(y —h)expli(kx/ S —ak)], (1.1)

where J() is the Dirac delta function, @ and p, are the frequency and the amplitude of
beam modulation, k=wm/c is the free-space wavenumber, f=v/c<1 is the relative
beam velocity, c is the light velocity, and h is the beam distance from x-axis.

We will consider the DR electromagnetic-field problems in the given-current

approximation. In this case the incident wave is the field of the sheet current beam (1.1)

moving in the free space. As it was shown in [3, 4], this field has the form of a slow
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inhomogeneous plane wave, the only nonzero component of the magnetic field of

which is

—qly=h| ikx/
aly IeI B

H, (X, y) = Agsign(y — h)e (1.2)

where =Ky / S,y =(@1- p*)"?, function sign(y —h)=+1 is the sign of the expression
in the brackets, the time dependence is omitted, and A is a constant, which equals to

P,C/2 in Sl units. This is a surface wave running along the beam trajectory in the

positive direction of the x-axis and decaying exponentially in the normal direction. It
has a finite jump corresponding to the current at the beam trajectory. Note that field
(1.2) is antisymmetric function of the coordinate y with respect to the beam trajectory
that is a drastic difference from more conventional in optics plane-wave field, which is
symmetric with respect to the propagation direction. To justify the considered approach,
it is worth noting that, in the real life, the modulation of the electron beam can be
achieved by its preliminary bunching in a periodic waveguide or through direct

modulation by a laser emission [11,17].
1.3 Complex permittivity of silver as a function of frequency

As an alternative to classical high-refractive-index materials, truly nanoscale
resonance effects are related to the localized surface plasmon (LSP) modes of deeply
sub-wavelength noble-metal (gold, silver, copper) particles and wires. Here, two noble
metals are especially attractive: the gold, because of its chemical stability, and the
silver, due to the smallest optical losses. Noble metals can be characterized with

complex relative permittivity (A1) in the visible range, which has negative real part,
Ree(4) <0, due to the dominant contribution of the plasma of the free electron gas. To

showcase plasmonic effects on nanowires, silver is a preferable material due to its lower

losses (Ime(A)>0) compared to gold or copper. In this thesis, a part of research is
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dedicated to DR of the modulated beam of charged particles in the presence of silver

nanowires and nanotubes. That is why, in this section it is important to explain the
complex permittivity of silver material in detail.

According to the Drude theory, the complex-valued relative dielectric permittivity
can be characterized analytically simple quadratic function of the frequency. This
formula involves the static permittivity and the plasma frequency of the material.
Accuracy of Drude theory gets worse if the frequency increases.

As an alternative, the Johnson and Christy experimental data are widely adopted
to incorporate the wavelength-dependence optical response of bulk silver [93]. The

spectra of the real and imaginary parts of &(A) are shown in the whole visible-light

range on panel (a) of Fig. 1.2 and in the ultra-violet range - on panel (b). It is worth
noting that the Drude formula, being a reasonable approximation at longer waves, fails

to provide accurate characterization in the ultra-violet, see [95].

10__ - _\)‘94‘2 |
J | 1 Y 3
0. 3
10 ' —~ —
] L2 ' 2L
] ! \ L E
=07 L1 14 L1
107 I ¥
.50 : 0 2 0

Re (&)
Im (¢)
Re (e

o

200 300 400 500 600 700 800 900 270 320 370
A, hm A, nm
(a) (b)

Fig. 1.2 Complex relative permittivity function of bulk silver versus the wavelength
in the optical range (a), and its zoom in a grey-boundary ultra-violet domain (b)

As one can see, there are two remarkable wavelengths, both laying in the ultra-
violet. One is around 306 nm where Reg =0.942 that is quite close to +1. This means

that silver is optically well-transparent at this wavelength although the losses remain
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significant as Ime&=1.97. We stress that this effect of “quasi-invisibility” cannot be

reproduced with the Drude formula for the dielectric function of silver. This justifies our
choice of experimental data in the analysis of silver scatterers of the visible light.

The other important wavelength value is around 337.7 nm, where Reg =—1.
This is the approximate quasi-static “textbook” value for the collective resonance on the
LSP modes of a single circular metal wire in the free space [15,17,19]. It is valid if the
losses can be neglected, Ime =0. Although for silver Imes =0.3 at that wavelength, it
predicts the LSP-caused peak of absorbance and scattering within the 5% accuracy if
the silver wire is thinner than 10 nm in radius.

Note also, that the bulk permittivity is applicable if the metal sample size is
significantly larger than the free-of-collisions electron path (a few nanometers).

The data of Johnson and Christy are widely acknowledged as reliable [94],
however, are known only at discrete values of wavelength. To obtain the permittivity of
silver at arbitrary wavelength, we employ the Akima spline interpolation algorithm.
This cubic-spline technique generates smooth curves that precisely match the tabulated

values, ensuring continuity and differentiability with respect to wavelength [95].

1.4 Graphene and its characteristics via the Kubo formalism

In this thesis, a part of research involves DR from circular wires, covered with
one more type of plasmonic material - graphene. Therefore, here we summarize the
information about graphene needed in our computations.

Graphene is new material that consists of a monolayer or a few such layers of
graphite, i.e. has sub-nanometer thickness [21,96]. It has remarkable properties like
transparency in the visible range, mechanic strength, and good electron conductivity in
the THz and infrared (IR) ranges. The conductivity is a function of the temperature,
frequency and graphene parameters. Graphene can support the plasmon guided wave at
the THz and IR frequencies that makes its electromagnetic properties similar to noble

metal ones in the visible-light range, however, at much lower frequencies. What is



38
principally new, graphene conductivity and hence plasmon effect can be tuned using the

DC bias, which translates to the chemical potential [22]. Usually graphene is attached to
flat dielectric substrates, however, now curved substrates attract an increasing attention
[23,24]. The initial production of graphene occurred in 2004 through the mechanical
exfoliation of highly oriented pyrolytic graphite [97]. Recently, graphene-covered
nanowire fabrication and synchrotron nanospectroscopy measurements have been
reported in [25]. More recently, a "green", safe, and fast method to prepare graphene
oxide nanosheets for functional applications as an adsorbent has been developed [98].
Note that circular-wire dimers coated with graphene have been studied with commercial
codes in the context of field forces [26] and cloaking [27], and with in-house code based
on the local Fourier expansions in the analysis of eigenfrequencies [99].

Measuring the DR intensity in the near or far zone, one can monitor the electron-
beam parameters. The resonance effects are promising for the sensor devices, such as
BPM. A resonance enhances the DR intensity proportionally to associated Q-factor of
the resonating mode. This approach can be extended to the THz and IR ranges if
suitable resonators shaped as sub-wavelength scatterers are found. As it is described in
this dissertation, one possible approach is the use of high-refractive-index materials;
however, available today dielectric materials have refractive indices within several
dozens, so that the resonances on their lowest modes entail only moderately sub-
wavelength dimensions. The other promising approach uses the noble-metal scatterers,
able to support the surface plasmon modes in the visible range; however, these modes
have rather low Q-factors (5-20). The more advantageous direction way can be seen in
the exploitation of the plasmon modes on the patterned graphene or graphene-coated
scatterers. Note that such configurations are already studied as the elements of
promising IR and THz range sensors of the host-medium refractive index [100] and
tuneable filers [101,102], absorbers [103], scatterers [104] and antennas [105]. The Q-
factors of the graphene plasmon modes in THz and IR ranges have moderate values (20-
100) that is higher than those of a solid metal wire in the visible-light range. This makes

graphene-coated dielectric micro- and nanowires attractive as resonance scatterers in
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many applications including DR-based BPMs. To investigate the EM wave scattering

by a graphene object, it is essential to blend the Maxwell boundary value problem with
a quantum model that represents the conductivity of graphene [106].

The most widely adopted today model of the electron mobility in the graphene
monolayer is the Kubo formalism [107], applied in numerous publications [108-110].
Here, the graphene thickness is considered zero, and its surface conductivity,

o(w, 1,7, T) depends on the cyclic frequency w, chemical potential uc, electron

relaxation time 7 and temperature T. This value consists of two contributions,

0= O-intra + O-inter !

which are the intraband and interband conductivities. Namely,

qszT H H
= 3 ¢ +2In|1+exp| - ||+, 1.3
i i’ (1t -iw) T T P kT (13

and o, is expressed as an integral of known functions (see [107]). If gz >>KgT, that

inter

integral can be reduced to simple expression,

B iqe2 n 21, —(a)+ir_1)h

O = 1.4
" Anh 2u +(a)+ ir‘l)h (14
Then, the normalized surface impedance (or resistivity) of graphene is
1
Z(w) = (1.5

ZO (O-intra + Ginter )

where Z,=./u,/ &, is the impedance of the free space. Note that the hexagonal fine

structure of graphene has the cell size around 10 nm. Therefore, scalar infinite-sheet
expressions for graphene’s conductivity are applicable (have good accuracy), if the size

of the patterned graphene is around 100 nm or larger. The relative contribution of two
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terms into (1.5) depends on the frequency and chemical potential. This can be

understood from the curves in Fig. 1.3 (a) and the color map in Fig. 1.3 (b).
The interband conductivity, in absolute value, is smaller than the intraband one,
which is called the Drude model term, in a wide range from the statics to a certain high

frequency, f, [107]. The upper bound here scales with the chemical potential, due to
the dominance of the term containing the factor yc(kBT)*l in the Kubo formulas. For
instance, if 7=05ps, T=300K and g =0.25eV, then |0 |<0.10,,,| at the
frequencies below f; =40 THz, while if 4 =0.5eV, then the same is valid at the

frequencies below f, =80 THz. Therefore, at f <f, we can safely neglect the

interband conductivity.
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Fig. 1.3 The frequency dependences of the intraband and interband surface
conductivities of the monolayer graphene sheet according to the Kubo formalism (a) and
the ratio of these two values as a function of the frequency and the chemical potential

(b). Electron relaxation time is 7 =0.5 ps,temperature is T =300 K

Still, above the mentioned frequency, which lays in the near infrared or visible

light range, the description of graphene should take into account both types of
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conductivity. Below, we will use the full expression (1.5) in the numerical analysis and

the simplified description using only the intraband term - in the analytical

characterization of the plasmon mode frequencies and thresholds.
1.5 Scattering and absorption cross-sections, optical theorem

This section provides an overview of the scattering and absorption characteristics
used in our studies, as well as the Optical Theorem (OT) that establishes their
relationship.

When a particle is exposed to a time-harmonic EM plane wave with specific
attributes, the power and angular dispersion of the scattered light, as well as the
absorbed power, are intricately dependent on the particle's inherent properties such as
shape, size, orientation, and composition materials. Still, these powers obey the power
conservation law. Similar to the plane-wave case, the scattering of electron beam field
from individual scatterers or their finite ensembles follows specific regularities that
stem from the same law of power conservation. Consider at first the plane-wave,

H™ = g™ scattering — see Fig.1.4 (a).
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Fig. 1.4 Cross-sectional geometry of a plane wave incident on a circular dielectric wire

(@) and an electron beam moving near the same wire (b)
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The total scattering cross section (TSCS) serves as a convenient characteristic of

the scattering efficiency. It is introduced as an integral over all possible directions in
space from the radial component of the averaged over the period Poynting vector

(power transfer vector) of the scattered field.

o, IlquReH‘rz)ds:

lim | ReTT®rdrd, 1.6
* "~ Rell" = -[ v (1.6)

ReH r—o0

where in the case of the H-polarization T1 :%E(/,H;, and IT" is the amplitude of the

Poynting vector of the incident plane wave. If an incident plane wave is H-polarized and

has a unit amplitude, then 1" =Z, / 2.

Taking into account that E, is expressed through H, by means of

E,=—2Z,— (1.7)

and H, has the form H®(r,¢)~2/(izk,r)e" ®(p) in the far zone (this is the

Sommerfeld radiation condition), we get that
2 2z

o, =— [|®(p)de, (1.8)
7K <

The absorption cross-section (ACS) serves for characterizing the averaged over
the period power, which is absorbed by lossy material. For instance, for graphene-

covered lossless circular dielectric wire it is given as

ReZ
= Re jEHdgo (1.9)

0
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where Z is the normalized surface impedance of graphene, see section 1.4,

This quantity can be also reduced to the following form:
2z )
o =7TRReZ I ‘W(go)‘ do, (1.10)
0

where w® (a,p) = H™ (a,9) + H?(a,p) — H™V (a, ) is the surface current induced

on the graphene cover.
The sum of SCS and ACS is known as the extinction cross-section (ECS),

o, =0, +0,,.. In the plane wave scattering, this quantity is linked to the far-field

scattering pattern magnitude in the forward direction by the expression known as
Optical Theorem [19],

o :—EReCD(O), (1.11)

€

As follows from (1.11), ACS can be also found from only the far-field quantities,

4

O = X Re®(0)-o,., (1.12)

OT has the physical meaning of the law of conservation of the electromagnetic
field power when a plane time-harmonic wave is scattered by a certain body located in
the fire space. To derive (1.11), one has to take the real part of the Poynting Complex
Theorem, applied to two functions: the total field and its complex conjugate, in a finite
region, which is bounded by two non-intersecting surfaces, inner and outer, and the
scattering body is inside the inner surface. After contracting the inner surface to the
origin of coordinates, and stretching the external one to the sphere of large radius, one
uses the boundary and the radiation condition, respectively, to arrive at the final result.

Therefore, OT is a convenient and powerful tool for partially checking the
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calculations correctness. However, one should keep in mind that this is only a necessary

condition of the correctness, and not a sufficient one.

Turning now to the DR of a modulated electron beam (see Fig. 1.4 (b)), we have
not a plane wave incident on a scatterer, but the field (1.2) of section 1.2.

Nevertheless, if we take into account that the scatterer on panel (b) is located

below the beam trajectory and introduce the complex incidence angle  , such that

cosy =1/ 3, singy =iyl pf, (1.13)

then we can present the incident field (1.2) as generalized plane wave,

Hz (x,y <h) = _Aﬂe—iqheikxcoswrikysinw (1.14)

Now, we can repeat all steps of the plane-wave case, normalize the scattered

power by the maximum value of the (1.14) Poynting vector Z,(AB)* /2, and obtain

2 2r
o, =— [|®(p)de, (1.15)
7K %

Similarly, we derive the OT, adapted to the DR of the modulated electron beam,

Oyt :—E Red(y) (1.16)

€
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1.6 Lasing Eigenvalue Problem

In the scope of the dissertation research, the author has also studied the natural
modes of circular nanowire configurations, using the lasing eigenvalue problem (LEP).
Thus, the LEP statement is introduced in this subsection in detail.

From the viewpoint of the Maxwell theory of time-harmonic EM waves, the
lasing can be conveniently viewed as the existence of the real-valued eigenfrequency
(natural mode frequency) of an open resonator.

As follows from the Poynting theorem, arbitrary passive open resonator
eigenfrequencies can be only complex, with non-zero imaginary parts that corresponds
to finite radiation losses. Therefore, in order to emit electromagnetic wave, which does
not attenuate in time, an open resonator must contain an active zone filled in with the
gain material. In practice, such “quantum” materials can be various semiconductors,
dye-doped polymers, or crystalline materials doped with ions of erbium or some other
rare-earth elements. All of them are able to demonstrate, under pumping, the inverse
population of electronic levels and the stimulated emission of light. Within macroscopic
electromagnetics, these properties are translated to the "negative losses" that is

expressed, for non-magnetic materials, by the corresponding sign of the imaginary part

of the dielectric permittivity, Ime, and refractive index Imy/e . If the time dependence is

chosen as €, then the gain material has Ime <0 and Im+/e <0.

Therefore, for a generic cavity under the pumping (Fig.1.5), the LEP assumes that
at least a part of the cavity domain is filled in with a gain material that is nonmagnetic
and has a complex refractive index with nonzero negative imaginary part, v=a —iy,
where « is known refractive index and >0 is unknown threshold gain index. The
surrounding media is assumed nonmagnetic as well and lossless [111]. Passive
dielectric cavities are known to possess an infinite number of discrete complex-valued

natural frequencies or wavenumbers k., each associated with certain natural mode or

non-zero EM field, {E;,H.} (s = 1,2, ...). The active region, thanks to the gain
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material, allows for the compensation of radiation losses associated with any specific

mode, resulting in the real-valued natural wavenumber (k, =Rek, ) for that mode. The
related threshold gain value y, >0 is mode-specific, i.e. is different for different modes.
From the mathematical point of view, the search for the real values of k; and y,, and

the associated modal fields in the near and far zones can be formulated as an
electromagnetic eigenvalue problem, i.e. similar to the scattering problem but without
the incident field [112].

Fig. 1.5. Cross-sectional geometry of a generic open resonator, equipped with an active
region, Va. Here, Vp and Vs are the passive and free-space parts of the resonator. Ry is

the radius of the open resonator volume - see [149] for details

Thus, within the LEP, one has to look for such pairs of real numbers (k,,7,) that
generate non-zero functions E_,H,, which solve the full-wave boundary-value problem
for the Maxwell equations with exact boundary conditions and radiation condition at
infinity. The linear nature of a boundary-value problem for the LEP is justified by the

zero field amplitude of any real laser as dynamic source at the threshold.

Note that, after discretization, the LEP is always reduced to a complex-valued
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transcendental or determinantal equation. This yields two equations, for the vanishing of

the real and imaginary parts, i.e. exactly what is needed to find the pair (k7). It is also
important to emphasize that a real value for k, indicates that the natural mode at the

lasing threshold does not experience time decay and its field follows typical spatial

decay pattern of either cylindrical wave, O(R"?) in 2-D, or spherical wave, O(R™) in 3-

D. Therefore, the condition at infinity can be taken as conventional Sommerfeld or
Silver-Muller condition of radiation, respectively.

Since 2004, the LEP-based analyses have been performed and published for the
modes of various 2-D cavities with active regions: stand-alone circular ones [112],
dimers [122] and cyclic photonic molecules [121] of circular active cavities, kite-shaped
[111], elliptic [151], and other ones. One of the most impressive results was the
explanation, using LEP, of the fact that the lowest-thresholds modes of elliptic cavity
with centered circular active region are not the whispering-gallery (WG) modes but the
so-called bow-tie modes. The reason is that the latter modes have much larger overlap
between the mode electric field and the active region, than the former.

More recently, LEP approach has been successfully applied to quantify the
threshold conditions of 2-D noble-metal nanolasers shaped as silver strip [152] and
silver tube [153] inside the active circular wire.

It is worth to note that the other LEP-like formulations exist, see [113-117],

where the threshold gain is characterized with the aid of Ime <0 instead of 7 or with the
product, g =ky, which is the gain per wavelength.

Note that, in reality, the gain index of active material depends on the frequency,

usually as a bell-like function reaching maximum at a certain central frequency, say, o,

which is material-specific. To reflect the frequency dispersion of the gain index, one can

introduce the latter function into the LEP as, say, y =7 exp[-o/(w—-,)’], and then look
for the mode-specific eigenvalue pairs (k,,7,). Still, even without this modification, LEP

enables one to compare various modes by their thresholds.
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Conclusions to Chapter 1

- In this Chapter, several methods of analysis of EM diffraction from
circular dielectric cylinders have been presented briefly and their advantages and
disadvantages have been discussed. The convergence of MAR is emphasized.

- The time-harmonically modulated electron beam field has been presented
and described. It is emphasized that this field (i) is H-polarized, (ii) is a slow surface
wave, compressed to the beam trajectory, (iii) is anti-symmetric with respect to the
trajectory, (iv) its jump across the trajectory equals the beam current.

- The complex permittivity of a noble metal such as silver has been
explained. The experimental data by Johnson and Christy has been discussed as
providing important advantages before the Drude description.

- Important for the research graphene characteristics, such as conductivity
and surface impedance have been presented, based on the Kubo formalism.

- The Optical Theorem has been derived, adapted to the DR effect, i.e. for
the incidence of the field of beam of charged particles. It establishes a relationship
between the total scattering and absorption cross-sections, and the far-field angular
pattern in certain complex-valued direction.

- The Lasing Eigenvalue Problem statement for the open resonators
equipped with active regions filled in with a gain material, has been explained.

The presented reference data are used below and in publications [A1-A25].
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CHAPTER 2 DIFFRACTION RADIATION OF A BEAM OF PARTICLES

MOVING NEAR DIELECTRIC NANOWIRES

In this section, the DR-caused scattering and absorption characteristics in the
visible range are investigated for a single circular dielectric nanowire and dimer of twin
circular dielectric nanowires, excited by a modulated electron beam. Research method
Is based on use of semi-analytical technique, which exploits the Fourier expansions in
the local coordinates of each wire and the addition theorems for the cylindrical
functions. As a result, single dielectric wire's resonance DR fields are investigated and
identified as linear combinations of two degenerate modes of a circular cavity. For the
dimer, the modes are the supermodes, built on the natural modes of each of the twin
dielectric cavities combined together according to the two-fold symmetry. The results of
chapter 2 have been published in works [A5, A6, A18-21, A25].

2.1 Scattering problem formulation for finite number of circular wires

As far as all considered problems involve the incident field in the form of the
modulated electron beam field and the circular cylinder scatterers, this section is
devoted to the introduction of the generic DR problem formulation for the finite number
of circular dielectric nanowires.

We investigate the problem of the electron beam field scattering from M circular
identical dielectric nanowires with radius a, located in the free space (i.e., in vacuum or
air) as it is shown in Fig. 2.1. Let us denote the internal region of the p-th wire as region
(1.p), and the external region to all wires or the enclosing medium as region (2). It
should be noted that the wires located under the beam trajectory are numbered as

p=1...,M,, meanwhile the wires located above the beam trajectory are numbered as
p=M,+1...,M . We introduce Cartesian and polar coordinates: global one with the

origin on the first wire axis, r =(X,y) and ¥ =(r,¢), that as Xx=rcos¢, y=rsing and
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r=yx?+y?, p=arctan(x/ y), and M local ones with origins at each wire axis. Besides,

we assume that the time dependence of the field has the form e, where o is the
cyclic frequency. The dielectric constant of the nanowires is equal to ¢ =¢'+ig", and

all materials are non-magnetic. Then the refractive index of the wire material is equal to

a =+/& . We consider the diffraction radiation accompanying the uniform motion of a
flat 2-D electron beam in the approximation of the given current, as it has been

introduced in section 1.2.

1
(2)( ) J / (Xei, Yai) x

A
Y

Fig. 2.1 Cross-sectional geometry of a flat zero-thickness electron beam moving near M

identical circular dielectric nanowires

As mentioned before, if we assume the electron beam velocity to be constant,
then the DR problem can be viewed as a classical wave-scattering boundary value
problem, where the incident field is the function (1.2). Then, the DR field has to satisfy
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the following conditions:

1. The Helmholtz equation with coefficient k., =ak in internal domain, (1.p),

where p=1,...M, and k,, =k =@/ ¢ in the external domain (2),

(A+ k2o H™™(r,0) =0, (2.1)

int,ext

2. The boundary conditions on the surface (on the contour) of each wire, which
are the continuity conditions for the tangential components of the EM field at r =a and

O<p<2r,

H)"(a,¢) =H(a,¢,) + H (a,¢,). (2.2a)

ext
LoH 7 (re)
or

oH." (r,p)
gor

_0H;(r,9)
or

E,'(a,p)=E,(a,¢)+E ) (a,¢) or ,(2.2b)

r=a r=a r=a

Note that from Maxwell's equations it follows that the electric and magnetic field
components are connected as in (1.7)

3. The condition for the local power finiteness,

J (&8 + 237 |rerdgp <ce, (2.3)

ScR?

where Z, = /1, / &, is the free-space impedance.

4. The Sommerfeld radiation condition at infinity (outgoing wave behavior),

H * (r, )~ /%eikrd)((p) at I —>o0. (2.4)

where the function @(¢) of one variable (the azimuth coordinate ¢) is called the
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angular scattering pattern in the far zone.

It can be proved that conditions (2.2) - (2.4) guarantee the uniqueness of the

solution, if only ¢£">0, that is, the wire consists of a lossy (¢">0) or passive (¢"=0)
material. This follows from the Poynting Complex Theorem: if we assume the opposite
(that there are two different H* (") for the same H°(r), then this theorem leads to an

expression with incompatible signs on the right and left hand sides.
2.2 Casting the problem to the Fredholm 2-nd kind matrix equation

To reduce the DR problem to a well-conditioned algebraic equation, we represent

the total magnetic field as follows (here and further, the index z is omitted):

H™P re{lp}:r<a, p=1.M

Htot — M ’ (2.5)
0 ext C T 2
H°+H*, re{2}:R \pL_Jl{l.p}

The magnetic field in domains (1.p) and (2) is represented as (p=1...M)

H™P(r,p)=>" yJ, (kar,)e"”, (r,@)e{l.p}, Internal (2.6)
H(Rp)= S S ZPHO (ke )e™ , (r.p) {2}, External @.7)
p=1..M n=—0

where y{™, z( are unknown coefficients, H® (-)and J_(-) are the first-kind Hankel

and the Bessel functions, respectively. Note that the series (2.6) and (2.7) satisfy the
Helmholtz equations (2.1), the condition of the local power finiteness (2.3), and the
radiation condition (2.4). To determine the unknown expansion coefficients, these series

are substituted into the boundary conditions (2.2) at the contours of the wires, and the
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addition theorems for the Bessel and Hankel functions are used [159].

For several nanowires, we use the Graf’s theorem (Fig. 2.2) as follows:

Z,(kr)e" = > J,(kr,)Z,,, (KL, )e™ 1, < L (2.8)

pj

Fig. 2.2 Graf’s theorem explanation geometry

Here, Z, is arbitrary cylindrical function. In our case, as it shown in Fig. 2.1,
taking into consideration the correspondent angles, v ; =7 -y, 0=¢, + -y ;, and

P=y, —@,, equation (2.8) takes the following form:
HY(kr)e™ = 37 HE (kL) d, (kr, )™ ™™ v, <Ly, j#p=12.M, (2.9)

In the near and far field zone, respectively, this yields

HY (kr, (P))e™ ™ = > H® (kr,)J, (kr (P)e' ™ ™6™ ¢ (P)<L;, (2.10)

n
N=-o0

HY (kr, ()™ = >3, (kr )H® (kr, (P))e" ™ ™5™ 1 (P)> L

(2.11)

R
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Further, we expand the incident field, i.e. the field of the modulated electron

beam (1.2) in the Fourier series in each of the local polar coordinates,

HO(r,,,) =—ABe" e 5 ime(krp)(l_Tyj e, p=L..,M,, (2.12)

HO(r,,¢,) = ABe " e i““Jm(krp)(l%j e, p=M,+1..M, (213)

=—0

Using the boundary conditions (2.2a) and (2.2b) with the Graf theorem (2.9), and

after the exclusion of all coefficients y{”, we obtain a block type (M x M) infinite-

matrix equations for the remaining coefficients. Omitting the superscript of the Hankel

function and using the prime to mark the differentiation in argument, we get

x(P) 4 Vm i i xDw H (kL _)ei(n*m)'//pi — anp) (2.14)
) W, Dm j=1 n=—0 o " Wiy Dm |
I=p
where x{P =zPw  w _ =(-D"w_,, w_,=n!(2/ka)",
V. =aJ (ka)d! (kaa) - I’ (ka)Jd, (ked), (2.15)
D_=a'H_(ka)Jd! (kaa) —H!, (ka)J._(kaa), (2.16)
R =B £7(ka)J;, (kaa)a* - I, (kea) f,P (ka) |, (2.17)

where, according to (2.12), the following expressions are established:

£ _ —Ae" e i (ka)1-p)" B ", p=1,...M, (2.18)
T ANy (k@) A+ )" B p=M, +1,.., M
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ayp+h) qik<p/Bimyp, 11 L \M p-m _
f,(p):{—Ae e iN (@A) P=L.u Mg

Ae e ik (k) L+ )" B, p=M, +1,.., M

As can be verified, the obtained equation (2.14) is of the Fredholm second kind.

2.3 Single dielectric nanowire: resonances on whispering gallery modes

In this section, the DR from the modulated beam of electrons flowing near a
single circular dielectric wire is considered. It can be expected that a high refractive
index nanowire behaves as an open resonator, thanks to which the radiated power can

be enhanced near the natural-mode wavelengths.

2.3.1 Basic equations

The cross-sectional geometry and notations of the studied single-wire DR
problem is shown in Fig. 1.4 (b). The circular shape of the wire boundary suggests the

use of the method of separation of variables. This means we expand the field functions

in each domain in the Fourier series in the angular coordinate ¢. In particular, if y<h,
then the beam field (1.2) can be presented in the form of generalized plane wave (1.14),

H Zin (r) — _Aﬂe—qheikr cos(p—w) ’ (220)

where A=cp,/2 and the complex incidence angle y is defined via (1.13). Then,

taking into account the stand-alone wire configuration (M;=1), we simplify (2.12) as

H2(F) =—Age™ 3 i (k)AL 7)" 5™, (2.21)
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The scattered field is expanded as

= |la, . (kr), r<al .
stc r) = elmgo’ 299

") mz;{berf)(kr), r>a (2.22)
where a_,b. are unknown coefficients, which are found using the conditions (2.1)-

(2.4). Note that, if M = M; = 1, then the general matrix equation (2.14), turns into direct

formulas, because the second term in the left-hand part vanishes. Thus, we obtain

a, =[f.(ka)H",(ka) - H, (ka) f ', (ka)](D,) " (2.23)

b, =[ f,(ka)a 3", (ked) - J, (ked) f ', (ka) | (D,,) ", (2.24)
fo=—ABe "™, (ka)A—y)" A", f;=-ABe ") (k)L-7)"F",  (2.25)
D, =J_ (ked)H', (ka)—a ™' (kea)H, (ka), (2.26)

Here, characteristic equations of the circular dielectric wire natural modes are

D (k)=0, m=0,+L2,..., (2.27)

As known, they may have complex solutions,k_, which form a discrete set with

mn?

negative imaginary parts. These are complex wavenumbers of the natural modes,

usually denoted as H_ ., where m=0,1,... and n=1,2,....

m,n?
2.3.2 Numerical results: resonances on the nanowire modes

Using the analytical expressions (2.21) — (2.24), we have studied the DR

characteristics for the scatterer shaped as a circular dielectric wire. Note that the series
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in (2.21) and (2.22) should be truncated to finite order, N, [41]. It can be shown that D

correct digits in the series are provided by the value of N, =kav/s / S+ D+1 or larger.
The plots in Fig. 2.3 demonstrate the dependences of the DR-caused normalized TSCS
on the modulation wavelength in the visible range, for the wire with the radius 50 nm,
relative dielectric constant £=12 (silicon), the separation distance h = 10 nm, and
several values of the relative beam velocity . As one can see, due to rather high optical
contrast of silicon, even such a tiny wire behaves as an open nanocavity.

Indeed, for all values of the relative beam velocity g the spectra of TSCS display
three distinctive peaks in the visible and ultra-violet ranges. Their wavelengths positions

at 464 nm, 306 nm, and 225 nm do not depend on the relative beam velocity 3.

14
0,1 =
0,01 4
s |
© 1 p=0.9
1E-4 o fv | p=0.7]
3 ——p=05
I 2 —p=0.3
200 300 400 500 600 700 800900

A, NM

Fig. 2.3 Normalized TSCS of the 50-nm in radius lossless silicon nanowire
(& =12) versus the wavelength in the visible range, for several values of the electrons’

relative velocity . Note the resonances on the wire modes
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*H,, Q=75

AH , Q=55

* XH,, Q=0.4

Fig. 2.4 Complex eigenvalues of the lossless circular silicon nanowire in the visible range

To clarify the nature of these peaks of TSCS, we have calculated the complex
eigenvalues of the dielectric nanowire, as the roots of characteristic equation (2.26).
They are presented in Fig. 2.4. There are four modes which have their wavelengths
between 150 nm and 900 nm. The most “blue” of them, Ha;, has the largest Q-factor.
The mode denoted XH; corresponds to the so-called external mode of a circular
dielectric cylinder, the existence of which was revealed, for instance, in Dettmann et al.
[118]. They have very low Q-factors and do not produce any distinctive peaks in the
spectra of TSCS and ACS. Other internal modes with high Q-factors are found in the
deep ultraviolet range below 200 nm. The near field patterns of the internal modes with
complex eigenvalues are presented in Fig. 2.5.

The panels of Figs. 2.6 show the in-resonance near field patterns for the same

dielectric nanowire as in Fig. 1.4( b) and two values of p.0One can clearly see the

straight trajectory of the beam at the distance h = 10 nm above the wire. The lowest
resonating mode, in frequency, is the Ho; mode at 464 nm that is certified by the single

bright spot near to wire’s center.
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Fig. 2.5 Near field patterns of the lowest-order internal eigenmodes of 50-nm in radius

silicon nanowire with the wavelengths between 150 nm and 900 nm

The next, in frequency, is the dipole mode Hj; at 306 nm showing two bright
spots. The most high-frequency peak at 225 nm is on the quadrupole mode Hy;. This
field pattern is well visible for the relativistic beam DR, as at 1- g <<1 the beam field
(1.2) is very close to a plane wave, albeit with a jump at the beam trajectory.

Here, it is necessary to remind that if B0 the incident field (1.2) is not

symmetric with respect to the wire section by the x-axis.
Indeed, for instance, the field (2.22) inside the wire can be rewritten as

—-gh o
H,*(r)= —Z'A\%Zim\]m(klr) Dnjl[B;1 cosme +iB sin m(p], (2.28)
Ka 5

where

B.(B)=[@-»"+@-»)" ] (2.29)
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Fig. 2.6 Total near magnetic field patterns (left panels) and normalized far-field scattering
patterns (right panels) of the lossless silicon nanowire of the radius a =50 nmand £=0.9
@c,e), #=0.5 (b,df) in the resonances on the modes Hp; for 4 =464 nm (a,b), Hi; at
A =306 nm (c,d) and Hz; at =225 nm (e,f)

Therefore, at the resonance wavelengths, the beam field excites not a single one
of two degenerate modes Hnn (m > 0) but the both, and the contribution of the anti-

symmetric with respect to y = 0 component gets larger with smaller 4. This leads to the

overlap of two modal patterns so that the resulting field portrait (in absolute value)



61
resembles a continuous ring. The reason is that if g <<1 (non-relativistic beam) then

Bﬁ(ﬂ)=i(2/,8)’”[1+0(ﬁ2)} Hence the inner field pattern takes the form of the

rotating wave, J_(kar)(cosmg—isinmg)+O(f), instead of the standing-wave
J_(kar)cosme, observed in the plane wave scattering. Note that this is not true for the

resonance on the Ho; mode (Fig. 2.6 a, b) because in this case the contribution of anti-
symmetric field component is zero.

This feature is also well visible in the far zone, where the normalized by the
maximum value angular scattering patterns are shown in Figs. 2.6 at the same

wavelengths. If S <<1, then the in-resonance radiation becomes omnidirectional.

2.4 Two dielectric nanowires as a model of beam position sensor

This section explores the opportunity of using the Photonic Molecule (PM)
configuration and its DR characteristics for obtaining the information on the beam
position shift h. Nanoscale size of such sensor antennas introduces negligible distortion
to the beam energy characteristics, which can be considered as fixed. This makes
possible the analysis of the beam position effect on DR in the same way as within the
traditional electromagnetic theory, i.e. as the scattering of the given electromagnetic-
wave field of the moving beam by the scatterers of given shapes and material properties.
The latter parameters can be manipulated to optimize the BPM performance.

PMs are attracting the attention of researchers since the late 1990s as
configurations occupying intermediate place between “photonic crystals” and “photonic
atoms,” or stand-alone dielectric particles [119-124]. PMs are configured as finite
number of similar or identical elements, usually having certain symmetry, say, a linear
“chain” of them or a cyclic “necklace.” They confine light and enable its efficient
manipulation at the micrometer length scale due to the strong optical coupling. This is
an alternative to the manipulation of light in the photonic crystals which are the media

with periodic variation of refractive index.
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The simplest PM contains two identical spherical or circular-wire (Fig. 2.7)

elements and hence it has two-fold symmetry. This circumstance leads to the
appearance of four orthogonal families of natural modes of such a twin PM [121]. Here,
each mode of PM is built on a certain mode of individual dielectric cavity, the cavities
being optically coupled together in one of the four possible ways. Therefore, the
coupled-cavity modes are called “supermodes.” Each family’s supermodes possess
either symmetry or anti-symmetry of each field component with respect to each
symmetry plane. This is usually expressed via the terms “bonding” and “anti-bonding”
or “even” and “odd,” respectively.

Besides, the symmetry and anti-symmetry can be understood via the placement of
the virtual perfect electrically conducting (PEC) or perfect magnetically conducting
(PMC) wall along the corresponding symmetry plane. Under an external illumination,
say, with a plane wave, PM supermodes can be either “bright” ones, that is, display
resonances in the scattering and absorption, or remain “dark.” The latter happens if the

incident field symmetry is different from the symmetry of the supermode natural field.
2.4.1 Problem formulation and basic equations

Consider a PM formed by two identical circular dielectric nanowires (#1 and #2)

separated by the distance L between their axes, with the same radius a and refractive

index a=+/¢ (¢ being the relative dielectric permittivity). We assume that electron
beam (1.1) moves between the wires in parallel to the x-axis at the distance h from it.
Hence, the beam separation from the lower (upper) wire axis is d=L/2+h. The
Cartesian and the local and global polar coordinates are shown in Fig. 2.7.

The formulation of the 2-D boundary-value problem for the unknown scattered
field involves the Helmholtz equation off the wire contours of cross-section, the
penetrable-boundary conditions at these contours, the Sommerfeld radiation condition at
infinity, and the condition of the local power finiteness. These conditions, which were

detailed discussed in section 2.2, guarantee the solution uniqueness.
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Fig. 2.7 Cross-sectional geometry of an electron beam moving between a pair of

identical circular nanowires, which form a photonic molecule

The considered PM configuration has been studied in a number of publications,
however, to the best of our knowledge, not with the electron-beam field (1.2) as a given
excitation field. Here, the approximate numerical techniques like [125] and commercial
FDTD-based codes [126] are important for engineering applications however not
enough accurate if studying the fundamental wave effects such as sharp resonances.
Therefore, we follow the semi-analytical technique first introduced by Twersky [78-81]
and further improved in [121, 127, 128]. This technique exploits the circular shape of
the boundaries of the wire cross-sections and combines the expansion of the field
function in the azimuth Fourier series (in the local polar coordinates of each wire) with
the addition theorems for the Bessel functions. It enables one to reduce the scattering
problem to the infinite-matrix equation for the expansion coefficients. The important
correction, introduced in [121, 127, 128], is the rescaling of that matrix equation to cast
it to the Fredholm second-kind form. This correction guarantees the convergence of the
numerical solution, in the mathematical sense.

Guided by these considerations, we expand the field in terms of the azimuth-



64
coordinate Fourier series inside each wire, 1 (1.p), p=12

HO (1,0, = D" Y93, (Ka, Jexp(imp,), T, <a, p=12 (231)

In the presence of the twin scatterers, the total field in the external domain,

I €(2), has the form of the sum,

H® =H°+H¥, (2.32)
He(rp)= 3 S 29H, (kr,)exp(im,), T, >a, (2.33)
p=1,2 m=—w0

where J_()and H_(-) are the Bessel and Hankel first-kind functions, and

(r,.¢,), p=1,2 are the local polar coordinates of the wires.

One of the boundary conditions requests the total field function H™ to be

continuous across each wire boundaries, I, , =a. On introducing the complex angles of

incidence of the wave (1.2) below and above the beam trajectory, v, ,, such that

cosy,, =1/ f, siny,, =iyl B, (2.34)

and using the Jacobi-Anger formula in the complex domain, we can expand the incident
field in terms of the azimuth series in the local coordinates of each wire as in [5],

H 0(&2’(01,2) — 1,A\ﬁe—q(LIZJ_rh)eierz cos(ep—) — ¢'A\ﬁe—q(LIZih) Z im\]m(krl‘z)(%} eim(pl'z ’(235)

M=—c0

The expressions (2.31) and (2.33) satisfy the Helmholtz equation, the local power
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finiteness condition, and the radiation condition.

For the twin PM configuration, the matrix equation (2.14) can be simplified to

two coupled infinite-matrix equations as presented below,

|:(12)

2y _Tm_ " Z X (H)""H n(kL)_— (2.36)

m—m N=-0 m m

where all notations correspond to Fig.2.7 and can be found in section 2.2.

Inspection of (2.36) shows that the diagonal matrix elements of its first (second)
block characterize the scattering by, respectively, the first (second) wire in the free
space, and the off-diagonal elements characterize the optical interaction. Note that the
off-diagonal elements are not zero and hence the interaction is always present and

decays rather slowly, as O[1/ (kL)"?] if kL — oo.

The obtained set (2.36) is a Fredholm second kind infinite-matrix equation (see

w2
[121, 127, 128]) due to the fact that " |A% " B[ <o0, where

€ 2) B2
m

the matrix elements, , and the right-hand part elements, , follow from

(2.36). Then the Fredholm theorems guarantee that its numerical solution (after
truncation to finite order N) converges to the exact solution. To obtain 5 correct digits in
the near field, one has to take N, >kaa/f+5 (however, more if the airgap L —2a

gets much smaller than a).
2.4.2 Scattering and absorption cross-sections

On using the large-argument asymptotic expressions for the Hankel functions, the
scattered field in the far zone (r-—»>o0) takes the form of cylindrical wave,
H*(r,p) = (2/izkr)"*d(p)exp(ikr), where the far-field angular scattering pattern

depends on the coefficients x{” =z{Pw_ , and w_, =(-1)"w, =n!(2/ka)",

n>0" n>0
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D(p) = @, () + D, (), ®1,2(¢)=6Xp(¢%ikLsin¢)§(—i)m 282 exp(imp),  (2.37)

m=—0

Then the total scattering cross-section is found as (1.8). If the dielectric wires are
lossy, then, besides the scattering, a part of the power of the incident field is absorbed in
PM. This is characterized by the absorption cross-section (ACS), which is found from
the integration of the normal component of the time-averaged Poynting vector over the

contours of the wires. This leads to the following equation:

S (YO +1y )Im[a\]m(kaa)\]m'(ka*a)] (2.38)

O,
abs — | Az ~

where * means the complex conjugation. The unknowns yfnl'z) are as follows

y&9J (k) = 242H_(ka) + Z( D™ z®N] (ka)H (kL) + £ (2.39)

N=—00

Thus, on solving the matrix equation (2.36) truncated to finite order N,_, one can

o
calculate the scattering and absorption cross-sections and the near and far field patterns.
Note that the accuracy of the calculation of the near field and hence the ACS is the same
as accuracy of solving (2.36). However, the accuracy of calculation of the far-field
angular pattern (2.37) and the TSCS (1.8) is approximately by an order of magnitude
better because of the presence of the Bessel functions, which decay exponentially with n

if n>ka.
2.4.3 Modified Optical Theorem

The sum of SCS and ACS is called the extinction cross-section [19]. Thanks to
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the Complex Poynting Theorem applied to the total field function and its complex

conjugate, the extinction of the considered PM scatterer can be connected to the far-
field values in certain complex directions.

Here, unlike the single-wire configuration of section 2.3, we have the scatterers
both above and below the beam trajectory. Therefore, it is necessary to introduce two
complex-valued angles of incidence of the wave (1.2) in the upper and lower half-

spaces, v, ,, respectively - see (2.34).

Then, the real part of the expression, which follows from the Complex Poynting

Theorem reduces (see section 1.4) modifies to

Gsc + O-abs = _%ﬂ Re[CI)l (l/ll) + CDZ (Wz)] ' (240)

or, with account of (2.37),

O, +0,, __ 4 ganpg i (—im)w{zrﬁ?eqh (1_—7j +zPe™ (H—yj } (2.41)
kAS o B B

The obtained expression plays the role of the Optical Theorem (OT) for the
diffraction radiation excited by the electron beam (1.1) flowing between the wires of a
twin-wire PM. If the TSCS value has been found, then the ACS value can be
determined from (2.41) instead of (2.38). Comparison of two values of ACS, found
from (2.38) and (2.41), can be viewed as a partial validation of the solution correctness.
Still, their coincidence is only a necessary condition of correctness however not a
sufficient one. The sufficient test is provided by the verification of the fulfillment of the
boundary conditions.

In our work, the Optical Theorem (OT) has been satisfied at the level of machine

precision and the boundary conditions have been satisfied with the same accuracy as the
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solution of the matrix equation (2.36), controlled by the truncation order N, . Additional
validation has been provided by the fact that if the relative dielectric permittivity of the
wire #2 is set to be 1, then the computed TSCS and ACS are the same as for a single
dielectric wire excited by the beam (1.1), where the full-wave analytical solution is

available [8], see also section 2.2.

2.4.4 Numerical results: resonances on the dimer supermodes

In computations, we have been looking for the features of the DR associated with
twin-cavity PM configuration that can be used for the detection of the shift of the beam
trajectory from central position between the dielectric wires. We are also interested in
seeing the effect of the relative beam velocity, g, on the DR.

Here, we remind that the modes of twin-wire PM (Fig. 2.6) are “supermodes”
built on the natural modes of each separate circular wire and optically coupled in four
possible ways because of the two-fold symmetry. Therefore, they are classified usually
as “x-even, y-even” (EE), “x-even, y-odd” (EO), “x-odd, y-even” (OE), and “x-odd, y-
odd” (OO). If the electron beam flows along the x-axis, i.e. exactly in the middle
between the dielectric wires, so that h=0, then its field (1.2) is anti-symmetric function

of y with respect to y=0. Such incident field is able to excite only the resonances on the

modes of the (EO) and (OO) families, while the supermodes of the other two families,
(EE) and (OE), remain “dark.” The latter-mode resonances can be expected to start
shining if the beam trajectory shifts from the central position, i.e. if h=0. This effect
can potentially serve as a marker for the beam position monitoring.

We start our numerical experiments from the PM made of two sub-wavelength
wires with a = 50 nm, and &=12 (¢ =3.4641). Such a material is similar to silicon or
GaAs that have very small losses in the visible range, so that, at first, we neglect them.
The airgap between the wires is 20 nm. Fig. 2.8 demonstrates the dependences of the

normalized total scattering cross-section (TSCS) on the beam modulation wavelength,
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for one and two thin sub-wavelength nanowires with the beam shift h=0 nm and

several values of the beam velocity A. As already mentioned, stand-alone circular

dielectric nanowire is a convenient reference scatterer, for which the DR problem can be
solved analytically similarly to the plane-wave scattering - see section 2.3 for details.
For all g, the plots of TSCS show three distinctive peaks at 4 = 225 nm, 306 nm,

and 464 nm with smooth shapes. Intensity of DR decays if £ gets smaller, i.e. for a

non-relativistic beam, because its field (1.2) becomes compressed to the beam
trajectory. The resonance peaks are broad that tells that the corresponding natural modes
have small Q-factors. This is apparently the reason that no splitting into doublets of the
(EO) and (OO) supermodes is visible, so that each peak is a collective resonance on
both of them.

10’ — —one wire a=50, p=0.9;
two wires a=50, p=0.9;

two wires a=50, 3=0.5
two wires a=50, =0.3

10—4 | N ZE N B S . T S I S L LR B ELELRR SR RS AR AN BRI R RRASAILE] LAIAbLIA]
20 300 400 500 600 700 800900

A, M

Fig. 2.8 Normalized TSCS of the 50-nm in radius one (dashed curve) and two silicon
nanowires versus the wavelength in the visible range, for several values of the electron

relative velocity B. The beam flows along the x-axis (h=0)

Moreover, if the beam trajectory is shifted from the x-axis, these peaks do not
split further, again because of the low Q-factors of the (EE) and (OE) supermodes,
which are “dark” if h=0 but should become “bright” if h=0. This gives an idea that
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too thin dielectric wires, even if made from nigh refractive index material, are not a

promising configuration for the beam-diagnostics applications.

Therefore, in Fig. 2.9 (a) we demonstrate the wavelength scans of TSCS for much
thicker silicon nanowire PM with a = 200 nm and the same airgap of 20 nm. As one can
see, in this case there are multiple resonances within the visible range (i.e. for A from
300 nm to 800 nm). A zoom of the part of the spectrum near to 360 nm is shown in Fig.
2.9 (b) for the beam velocity $=0.5 and two beam shifts, and h=5 nm. Now, the

splitting of the resonance peaks is clearly visible.
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Fig. 2.9 The same as in Fig. 2.8 however for one (dashed curves) and two (solid curves)
silicon nanowires of the 200-nm radius (a) and a zoom of the TSCS spectra for in the

wavelengths range from 350 nm to 370 nm (b)

According to [121], the quartets of WG supermodes actually form two tight
doublets: one of the (OO) and (EO) families of modes and another of the (EO) and (EE)
families. Close inspection shows that the complex poles underlying the higher-Q peak
of TSCS for h=0 at the wavelengths of 359.85 nm in Fig. 2.9 (b), correspond to the

supermode H;, and apparently not resolved sister-mode H,,. Similarly to that, a

broader peak at 361.17 nm corresponds to the lower-Q supermode H7°§) and its not
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resolved sister-mode Hf? This interpretation is fully supported by the in-resonance

normalized far-field angular patterns and the near-field patterns shown in Figs. 2.10 and
2.11, respectively, for the symmetric excitation of twin-wire PM (h=0). The beam
trajectory is indicated by the dashed line. In each peak, the supermodes of the (OO)

family dominate in the total field.
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Fig. 2.10 Symmetric beam excitation. In-resonances normalized far-field scattering
patterns of twin silicon nanowires of the radius a = 200 nm, L =120 nm, h=0 and
£=0.5at 1 =359.85 nm (a) and 361.17 nm (b).
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Fig. 2.11 Symmetric beam excitation. In-resonances near field patterns of twin silicon

nanowires of the same parameters as in Fig.2.10

What is most important from the viewpoint of applications in BPM design, if the
beam trajectory is shifted from the x-axis, then new additional peaks of TSCS appear.
This is visible on the zoomed spectrum shown in Fig. 2.9 (b) for h = 5 nm: an additional

sharper peak starts shining at 360.76 nm and a broad peak appears at 365.5 nm. The
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corresponding in-resonance far-field angular patterns and the total near-field patterns

are depicted in Fig. 2.12 and Fig. 2.13, respectively.
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Fig. 2.12 Non-symmetric beam excitation. The same as in Fig. 2.10 for a = 200 nm, L
=420 nm, h=5nm, p=0.5 at 1 = 359.85 nm (a), 360.76 nm (b), and 361.17 nm (c)
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Fig. 2.13 Non-symmetric beam excitation. In-resonances near field patterns of twin

silicon nanowires of the same parameters as in Fig.2.12

Note that the pattern in Fig. 2.12 (a) is very close to the pattern in Fig. 2.10 (a)

and that in Fig. 2.13 (a) — to the one in Fig. 2.11 (a). The same is visible for the patterns

shown on the panels (c) of Fig. 2.12 and Fig. 2.13 and panels (b) of Fig. 2.10 and Fig.

2.11, respectively. This leads to the conclusion that the supermodes with the fields, anti-

symmetric with respect to y, are weakly sensitive to the shift h of the beam trajectory.

The explanation of this property can be seen in the fact that these modes have zero
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values of their H-fields on the x-axis and hence it is much better compatible with the

incident field (1.2) than of the y—even mode families.
In contrast, the patterns shown in Fig. 2.12 (b) and Fig. 2.13 (b) correspond to the

new resonance at 360.76 nm, which is absent if h=0. They demonstrate that this is the

EO . . . .
resonance on the WG supermode Hg,', with some admixture of its not resolved sister-

EE . . . . .
mode Hg;, which has smaller contribution. Similar conclusions can be reached for the

broad peak at 365.5 nm, not existent at h=0.

To strengthen these conclusions, we have computed the TSCS spectra for the
symmetric and shifted beam excitation of the twin-wire PM with even larger however
still nanoscale silicon resonators, of the 400-nm radius. The corresponding plots are
presented in Fig. 2.14 (a) for #=0.5 and the shift values h = 0 and h =5 nm in the
range of wavelengths between 400 nm and 500 nm, and a zoom around 423 nm is
shown in Fig. 2.14 (b). Like in the previous example, the TSCS of the PM excited by
symmetrically flowing beam demonstrates two resonance peaks, while the non-

symmetrically excited PM — four resonance peaks.

— — h=0, B=0.5 ?421.88 nm — — h=0,p=05
——h=5nm, $=0.5 10?4 ——h=5nm, =0.5
] 422.58 nm
10" 5
42347 nm
r'd 42560 nm

-—
e S

10 a=400 nm
420 a2 a2 426 428
A, nm A, nm
(@) (b)

Fig. 2.14 Normalized TSCS of PM on twin silicon nanowires of 400-nm radius with
20-nm airgap versus the wavelength, for the electron relative velocity g = 0.5 and two

values of the shift distance h (a) and its zoom (b)
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As we could already see, reliable interpretation of the resonances is best achieved

via visualizing the near-field patterns. The four in-resonance field patterns
corresponding to the four peaks of TSCS in Fig. 2.14 (b) for the beam shifted by h =5
nm are presented in Fig. 2.15.

They demonstrate convincingly the fields dominated by the higher-Q supermodes

H.,5 at 421.9 nm and Hy;, at 422.6 nm in the sharp peaks of TSCS, and the lower-Q

supermodes H&o at 423.5 nm and HQ%E at 425.6 nm - in the broader peaks of TSCS. In

each case, the pattern is slightly distorted by the presence of not fully resolved sister-

supermode of the x—even family. Here, similarly to the previous example with 200-nm

in radius twin-wire PM, the appearance of the peaks on the y-even modes HE,EZ and H;E

can serve as a marker of the beam deviation from the center of the 20-nm airgap.

@) H (b) Hp,

-600 -400 -200 0 200 400 600 800 -600 -400 -200 0 200 400 600 800
X X

(c) Hgs (d) Hgs

Fig. 2.15 Non-symmetric excitation. In-resonances near field patterns of twin silicon
nanowires of the radius a =400 nm, L =820 nm, s=20nm,h=5nmand f=0.5at 4
=421.88 (a), 422.58 (b), 423.47 (c) and 425.60 nm (d)
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Next, we analyze in greater details the sharper peaks of TSCS in Fig. 2.14 (a),

near to the wavelength of 415 nm. The corresponding zoom is shown in Fig. 2.16 for

the shifted by 5 nm and not shifted trajectories of the electron beam with g = 0.5.
Similarly to the previous analysis, the sharper peak on the Hl‘?ﬁ WG supermode at
/A =415.1219 nm is present in both cases and keeps the same shape, and the other peak

on the Hfﬁfl supermode at 415.489 nm appears only if the beam trajectory is shifted.
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Fig. 2.16 Zoom of TSCS curves from Fig. 2.14(b) between 1 =415 - 415.6 nm
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Fig. 2.17 Non-symmetric excitation. In-resonances near field patterns of twin silicon
nanowires of the radius a =400 nm, L =820 nm,s=20nm, h=5nmand f=0.5at

) = 415.1219 nm (a), 415.489 nm (b)
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The WG supermode type identification is based on the visualization of the near

field patterns in these two resonances, presented in Fig. 2.17. Thus, the resonances on
the supermodes, which have only one field variation in radius, serve as even better
marker of the beam trajectory deviation from the central (symmetrical) position,
because of the higher Q-factors.

So far, we have been discussing the numerical results computed with the lossless
dielectric cavities. In order to obtain a vision of the role played by the losses, now we
introduce small bulk material losses, Imeg, in the 400-nm in radius wires and compute
the ACS as a function of the wavelength — see Fig. 2.18. The PM and the electron-beam

parameters are taken the same as in Fig. 2.14 (b).
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Fig. 2.18 Normalized ACS of PM on twin silicon nanowires of 400-nm radius with
20-nm airgap versus the wavelength, for the electron relative velocity g = 0.5 and two

values of the shift distance h

As one can see, the ACS spectra show the resonance peaks at the same
wavelengths as on the plots of TSCS, which are not shown here because for so small

bulk losses they overlap with the curves in Fig. 2.14 (b). The maximum value of the
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absorption is achieved in the resonance on the most high-Q mode, H.;,, however it is

still by the order of magnitude lower than the resonance scattering (compare with Fig.

2.14 (b)). Similarly to the scattering, two additional peaks of absorption appear if the
beam trajectory deviates from the airgap center, on the y-even modes Hj;, and Hgs. If

the bulk losses in the dielectric material are taken 10 times greater, 107 instead of 10,
then the ACS curves also rise by approximately an order, except of the high-Q
resonances where this rise is cancelled by the Q-factor, which in this case is inverse

proportional to the bulk losses.
Conclusions to Chapter 2

In this section, the DR-caused scattering and absorption characteristics of a
modulated beam of particles in the visible range have been considered. For one wire
we have used analytical solution obtained by the separation of variables. For twin wires
configuration (also known as photonic molecule or dimer), a numerical-analytical
method with guaranteed convergence has been developed and used. Implementing these
reliable computational tools, resonances in the DR characteristics, such as scattering and
absorption cross sections, have been investigated and discussed. According to the
results of the performed research, it is possible to draw the following conclusions:

- If one can neglect the action of the field on the electrons, then the EM field
of a modulated 2-D beam takes form of a surface slow wave propagating along the
beam trajectory. This wave induces the polarization and surface currents on the local
obstacles and hence a radiation occurs even if the beam does not touch the obstacle. In
fact, the wire plays the role of optical nanoantenna, which makes the beam of particles
visible. As we have shown, a nanowire behaves as an open resonator, thanks to which
the radiated power is enhanced near the natural-mode wavelengths.

- For the single dielectric nanowire, unlike the more conventional plane-

wave scattering, the in-resonance fields (except of the Hos mode) are shaped as rotating
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cylindrical waves. This happens because of three circumstances: (1) the beam field

depends on y, and hence there are no “dark modes” of the wire that remain not excited
because of orthogonal symmetry with respect to the incident wave, (11) the symmetric

and the anti-symmetric natural modes of the wire remain degenerate, and (l1l) if 5 >0,

then the phase shift between these mode contributions approaches 7 /2.

- A PM formed by a pair of identical nanowires made of high refractive
index dielectric material behaves as a composite optical open resonator, which supports
quartets of supermodes built on the natural modes of each cavity, combined together
according to the two-fold symmetry of this configuration. If the electron beam flows
between the wires, the emerging DR is resonantly enhanced near each natural WG
supermode wavelength. As we have found, if the beam trajectory shifts away from the
central (i.e. symmetrical) position, then new peaks in the spectra of the scattering
become visible. They appear due to the resonances on the formerly “dark” WG
supermodes, which are absent in the symmetric beam excitation. This effect can be
important for applications related to the design of novel optical-range BPMs. It is
interesting to question the feasibility of experimental verification of the presented
effects. Today the size of controllably manufactured subwavelength dielectric
microcavities is measured in hundreds and dozens of nanometers. So, in principle,
experimental verification is realistic. Besides, the DR a dielectric resonator with a fixed
relative permittivity can be scaled up to larger sizes and wavelengths. For example, the
curves presented in Figs. 2.13 to 2.16 for the wire radius 400 nm and the wavelengths of
400 nm to 500 nm are equally valid for the wire radius 4 mm and the wavelengths of 4

mm to 5 mm.
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CHAPTER 3 DIFFRACTION RADIATION OF A BEAM OF PARTICLES

MOVING NEAR SILVER NANOWIRES

In this chapter, the DR-caused scattering and absorption characteristics in the
visible range are numerically investigated for a stand-alone circular silver nanowire and
twin circular silver nanowires and nanotubes. These configurations are investigated
keeping in mind the BPM applications. The wavelength-dependent permittivity of silver
Is taken from the experimental data and shows negative real-part values. Thanks to this,
sub-wavelength in radius silver nanowires are famous as nanoresonators due to the
localized surface-plasmon (LSP) modes. Similar to Chapter 2, we use the field
expansions in the azimuthal Fourier series and the addition theorems for the cylindrical
functions. This enables us to solve one-wire problem analytically and reduce it to a
Fredholm second kind infinite-matrix equation for silver-wire and silver-tube dimers.
Here the Fredholm theorems guarantee convergence of numerical solutions. Truncating
this matrix, we compute the near and far field patterns of the wires as optically coupled
plasmonic resonators and analyze dependence of the near and far-field spectral
characteristics on the wavelength and electron beam parameters. The materials of
Chapter 3 are published in works [A3, A4, A6, A15-17, A22-24].

3.1 Single silver circular nanowire: resonances on the plasmon modes

We study the DR characteristics of the charged particles beam (1.1) moving near
a circular metal (silver) nanowire. All basic equations are similar to the dielectric single
wire case presented in section 2.3, the difference being in the complex permittivity of
the silver material. The complex-valued bulk dielectric permittivity of silver has been
taken from the experimental paper of Johnson and Christy [93] and combined with a
cubic spline interpolation as it was explained in section 1.3. Note that the plane-wave
scattering from stand-alone and twin-wire plasmonic scatterers was extensively studied

in the past [134-136], however, the DR effect has not been studied. In computations, the
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associated series or matrix equations have been truncated at the number £10 that well

exceeds the maximum value of ka|e | S7'in the whole optical range and provides 4 and

more correct digits.

o> O O»(0> O O> O

Fig. 3.1 Cross-sectional geometry of an electron beam moving near a stand-alone

circular silver nanowire

Note that the silver nanowire’s dielectric function varies between 0.93
(at 2 = 306 nm) and -40 in the visible range and that the losses are quite considerable,
between 0.2 and 3.9 — see Fig.1.2.

The plots in Fig. 3.2 demonstrate the dependences of the normalized TSCS and
ACS on the modulation wavelength in the visible range, for the wire with the radius 50
nm, the impact parameter h = 60 nm, and several values of the relative beam velocity .
For all g, the plots of TSCS show the maximum at 4 = 347 nm preceded by the
minimum at 2 = 318 nm and the plots of ACS — the peak at A = 343 nm. Note that ACS
is quite comparable with TSCS, especially in the blue and violet parts of the spectrum.

As expected, the wavelengths of the peak scattering and peak absorption are very
close to the root of the “textbook” quasi-static equation, Re&(1) =—1 [19,95], found at

J = 338 nm [93]. This is a collective resonance caused by the infinite number

(m=1,2,...) of the transverse LSP modes of a circular wire with negative dielectric
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Fig. 3.2 Normalized TSCS (a) and ACS (b) of the 50-nm silver nanowire versus the

wavelength in the visible range, for several values of the electron relative velocity g

function. This happens because, if a/4—0, then the corresponding characteristic
equation (2.27) takes form as D, (1) = ¢(1) +1+0O(m™a*41?)[95], which is asymptotically
independent of the azimuth index m. The peaks of separate LSP resonances merge
together because of the losses in silver.

The minimum of TSCS (and to lesser extent of ACS) is typical for the plasmonic
scatterers, see [27, 99, 129]. Its location in wavelength corresponds to the value, at

which the dielectric function of silver, Reg(41)=1, comes near to 1. Here, the metal

placed in the vacuum becomes optically transparent although still not invisible due to
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non-zero absorption. According to experimental measurements [93], that happens at 4 =

308 nm, and the red shift of the minimum in Fig. 3.2 is the effect of the finite wire
radius. As can be found after inspection of the works [127, 128, 130, 131], this
“invisibility” effect is equally well observable in the scattering of light by finite and
infinite arrays of circular silver nanowires. Potentially such optical transparency can be
also useful in the design of beam velocity sensors, because the depth of the minimum

depends of that velocity.
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Fig. 3.3 Complex eigenvalues of the silver nanowire in the visible range

To clarify the nature of the peak of TSCS, we have calculated the complex
eigenvalues of the silver nanowire using the rigorous characteristic equations (2.26).
Here, Johnson and Christy data for ¢(4) cannot be used directly because they were
measured for the real frequencies. To overcome this difficulty, we have used the
modified “Drude + two Lorentzians” formula presented in [132] that provides
reasonably good approximation of the measured data in the range between 200 nm and
400 nm, and continued it to the complex frequencies.

The results are presented in Fig. 3.3. As expected, for all m the complex eigen-

wavelengths are located close to each other between 330 nm and 360 nm and have
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comparable imaginary parts of A. Their Q-factors are between 5 and 15. They

correspond to the LSP modes of the metal wire from P; to Ps. The notations X, and Xs
correspond to the so-called secondary plasmon modes, the existence of which was
apparently mentioned first time in [95]. They have comparable Q-factors however
produce no separate peaks in the spectra of TSCS and ACS. The near field patterns of
the plasmon modes P; to Ps are presented in Fig. 3.4,
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Fig. 3.4 Near field patterns of the lowest-order plasmon modes of silver nanowire with the
wavelengths between 330 nm and 350 nm

We have also computed the total near magnetic field patterns and the normalized
DR far-field angular scattering patterns of the same silver nanowire excited by the beam
of particles (1.1), at the fixed values of g and 4. As one can see in Fig. 3.5, at the
resonance wavelengths the total field is dominated by the mentioned composition of
many plasmon modes. Its bright spots are located near the surface of the nanowire and

do not penetrate into it. This is explained by the surface nature of the plasmon modes.
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Fig. 3.5 Near magnetic field patterns (left) and normalized far-field scattering pattern

(right) of the silver nanowire of the radius a = 50 nm for and  =0.8 (a),

£ =05

(b) in the collective LSP resonance at A = 347 nm

At the “invisibility wavelength” of 4 = 318 nm, the total field in the near zone

shows the beam field (1.2) only slightly perturbed by the wire — see Fig. 3.6
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Fig. 3.6 The same as in Fig. 3.5 however for the A = 318 nm in the TSCS minimum

The almost omnidirectional shape of the far-field DR patterns can be explained

by the comparable contribution of the symmetric and anti-symmetric along the y-axis
field parts. Its maximum is always oriented in the normal direction to the beam

trajectory.
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3.2 Twin silver nanowires: resonances on the plasmon supermodes

In this section, the DR from a modulated beam of electrons moving between the
twin circular silver nanowires is considered.

Consider two identical circular silver nanowires (marked #1 and #2 in Fig. 3.7)
separated by the distance L between their axes, with the same radius a and complex

refractive index «(1)=+/¢. The gap between the wires is s=L—2a and the Cartesian

and the local, (r,,,¢,,), and the global, (r,¢), polar coordinates are chosen as shown in

Fig. 3.7.

Fig. 3.7. Cross-sectional geometry of a plasmonic PM made of two identical circular

silver nanowires excited by a modulated electron beam moving between them

Consider now a one-dimensional electron beam moving along a straight trajectory
at the distance h < s/2 from the x-axis. The charge density function and the EM field of
the beam are represented as in section 1.2. Its magnetic field in free space is given by

(1.2) and has finite jump at the trajectory.
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In the presence of silver wires, the total magnetic field is different from (1.2).

Neglecting the particles deceleration because of the loss of energy (this is called the
given-current model), we can assume that the field (1.2) is fixed and consider it as the
incident field. Then, to find the total field, we have to solve a 2-D boundary-value
wave-scattering problem as explained in chapter 2.

The silver dimer configuration coupled infinite-matrix equations are similar to the
dielectric dimer ones (2.33), however, imply the use of the wavelength-dependent
complex dielectric permittivity of silver, presented in section 1.3.

The scattering, absorption and extinction cross-sections are calculated similar to
section 2.4, where the modified Optical Theorem was also presented.

As we have verified, the error in the Optical Theorem oscillates at the level of
machine precision and the error in the boundary conditions is the same level as for the
solution of (2.35), controlled by the matrix truncation order M. Additionally, if we set
the material of the wire #2 to be the free space, then the computed cross-sections
coincide with their values for a stand-alone silver wire, found in analytical form in
chapter 2 [17].

Fig. 3.8 demonstrates the dependences of the normalized by 4a TSCS and TACS
on the electron-beam modulation wavelength in the visible range, for twin silver
nanowires with sub-wavelength radii a = 10 nm, 50 nm, and 200 nm, separated by the
gap of s = 20 nm. Here, the beam flows along the x-axis (i.e. symmetrically, so that the
shift is h = 0) and the beam velocity is f = 0.9 that corresponds to so-called relativistic
beam.

The plots of TSCS show one, if a = 10 nm, or a few overlapping peaks, if a is
lager. This peak is known as collective resonance on the LSP modes of one thin silver
nanowire. In section 3.1, it was already demonstrated that the collective plasmon
resonance on a stand-alone metal wire can be excited not only by an H-polarized plane

wave as in [80, 128, 131, 95] but also by a modulated electron beam.
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Fig. 3.8 Normalized TSCS (a) and TACS (b) of two identical silver nanowires versus
the wavelength, for the electron beam with the relative velocity g = 0.9 flowing along
the x-axis (h = 0)

The plasmonic PM built of twin circular metal nanowires is a more complicated
open plasmonic resonator. Its natural modes have much in common with the modes of
PM built of two circular dielectric wires, studied in section 2.2 (see also [122]). They
form so-called “plasmonic supermodes” built on optically coupled LSP modes of each
wire. In the case of twin wires these supermodes make quartets where each of them
belongs to one of four independent classes of symmetry of the pair [122]. They can be,

therefore, denoted as P, P°>5,P™°, P°°, where E(O) corresponds to the even (odd)

dependence on x and y.

Note that similarly to the plane-wave scattering from a single circular silver wire
[95], for the thicker wires the LSP peak in the scattering cross-section splits to several
ones, where the most red-shifted peak corresponds to the supermode built on the P;
mode of each wire, and others correspond to the supermodes on the higher-order LSP
modes. In view of the symmetry, partial SCS are each equal to one-half of TSCS.

In contrast, the plots of TACS of a deeply sub-wavelength silver wire

demonstrate only one common peak, slightly blue-shifted for the thicker wires from the
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quasi-static value of 337 nm. The higher-order LSP resonances show up as gentle

“shoulders” on the red side of that peak.

The effect of “quasi-invisibility” is present on the plots of TSCS for both thin and
thick silver wires (note that this phenomenon has no relation to “Fano-shape”
resonances in the other scattering analyses). The associated minimum is especially deep
for a deeply sub-wavelength wire. On the plots of TACS, there is no similar minimum
due to considerable losses in the bulk silver.

In Fig. 3.9, we present the normalized far-field scattering patterns at the
wavelengths of the peaks on the TSCS plots of Fig. 3.8 (a). As the beam flows strictly in
the middle between the wires, the angular patterns have zeros along the x-axis. The

number of lobes in the far zone corresponds to the mode index m.

a=10 nm, P* a =50 nm, P + P a =50 nm, PE° + P

(b)
a =200 nm, several P3 a =200 nm, B~
(d) (€) (f)

Fig. 3.9 Normalized far-field scattering patterns of the twin silver nanowires for the
beam flowing along the x-axis (h = 0) with the relative velocity = 0.9. The wire radius
is as indicated, and the wavelength is 2 = 337 nm (a), 332 nm (b), 354 nm (c), 332 nm
(d), 354 nm (e), and 382 nm (f)
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Now, to clarify the effect of the shift of the beam trajectory on the scattering and

absorption, we show the visible-range spectra of the partial SCS and ACS for several
values of the silver wire radius a and the gap of 20 nm however assuming that h =5 nm.
To see what changes if the beam velocity g varies, we select it as 0.3, 0.5 and 0.9

The plots in Fig. 3.10(a) demonstrate the dependences of the normalized by 4a
partial SCS on the modulation wavelength in the visible range, for nanowires with
deeply sub-wavelength radius of a = 10 nm. As one can see, for all values of g, the plots

of partial SCS, s (1) and & (1), are very close to each other. They show one

sc

distinctive peak at 4 = 337 nm that does not change its place noticeably if the beam shift
h gets larger. Effect of the “quasi-invisibility” is also well visible as a deep minimum,
slightly red-shifted from the value of 306 nm where the bulk silver dielectric function is

the closest to +1.
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Fig. 3.10 Normalized partial SCS and ACS of twin silver nanowires with radius 10 nm
versus the wavelength in the visible range, for several values of the electron velocity p.

The beam flows above the x-axis at the distance h =5 nm

In the absorption (Fig. 3.10(b)), the LSP peak appears at a slightly blue-shifted

position between 330 nm and 335 nm, depending on the velocity g and shift value h. As
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already mentioned, there is no “invisibility” effect in the absorption as the silver is

sizably lossy in the deep ultra-violet. Note that the partial TCSs of such thin nanowires
are practically the same for any beam velocity f. The plots of ACS demonstrate a
similar independence of g for relativistic beams, however, if g becomes smaller, the
difference in favour of the nearer wire becomes visible.

Colour maps in Fig. 3.11 demonstrate in-resonance patterns of the near magnetic
field for such deeply sub-wavelength wires. Panel (a) corresponds to the peak in the
scattering. One can conclude that the near field is dominated by the contribution of two

nearly degenerate supermodes, P and B°°. The field on the panel (b) corresponds to

the “scattering invisibility” wavelength. It shows, indeed, that in this case the beam of
particles does not see the silver nanowires, and its field is very close to the field (1.2) in

the free space.
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Fig. 3.11 Normalized near magnetic field patterns of the 10-nm in radius twin silver
nanowires excited with the electron beam having the velocity = 0.3, in the plasmon
resonance at 4 =337 nm (a) and in the “quasi-invisibility” case (minimum scattering)

at A = 330 nm (b). The beam flows above the x-axis: h =5 nm

For the better insight into the physics of DR, the plots in Figs. 3.12 present the
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spectra of the partial SCS and ACS for the beam-excited twin silver nanowires of larger

radius, 200 nm.

Unlike the thinner wires, these configurations show, besides of the main peak,
several smaller ones at the longer wavelengths. They are well resolved on the SCS plots
and correspond to the EO supermodes built on the higher-order LSP modes P, of each

circular wire (see [133]).
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Fig. 3.12 The same as on Fig. 3.10 however for the wire radius 200 nm

The patterns in Fig. 3.13 correspond to the most “violet” peak of SCS that is

collective resonance on higher-order LSP modes. In contrast Fig. 3.14 shows the near
fields, dominated by the LSP supermode modes PmEO with m =5 (a) and m = 4 (b),
respectively. This interpretation is also supported by the far-field angular scattering
patterns, presented in Fig. 3.9. The plots of partial cross-sections show that, unlike
thinner wires, the thicker ones demonstrate that the nearer to the beam wire is both a
stronger scatterer and a stronger absorber unless the beam is relativistic (that is if

L —1) although for the 200-nm wire the near field patterns are almost symmetric.
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Fig. 3.13 Near magnetic field patterns of the 200-nm in radius twin silver nanowires at
Z =332 nm (the most “violet” peak), for the electron beam velocity f= 0.9 (a) and p=

0.3 (b); the beam flows above the x-axis (h =5 nm)
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Fig. 3.14 The same as in Fig. 3.13 however in the smaller peaks of TSCS in Fig. 3.12,
that is at 2 = 354 nm (a) and A = 382 nm (b). The electron beam is relativistic, 5= 0.9,

and flows above the x-axis, h =5 nm

Thus, the spectra of DR-caused SCS and ACS for solid circular silver wire dimer
show that such a configuration “does not feel” the shift of the beam trajectory from the
central position. This happens because (i) the LSP modes of single wire and LSP
supermodes of dimer are nearby degenerate and cluster at the “textbook” wavelength,
where Reg(A) =1, and (ii) they have low Q-factors, between 5 and 20.
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3.3 Twin silver nanotubes as a model of beam position monitor

The results of the previous section suggest that, to be sensitive to the beam shift,
the nanoscale noble-metal dimer elements should have LSP modes, which are (i) well-
separated in wavelengths for different azimuthal orders, m, and (ii) have larger Q-
factors. Such modified elements can be still circular, in cross-section, however, shaped

as thin hollow silver nanotubes, as follows from [138, 95].
3.3.1 Formulation and basic equations

Considered BPM configuration is shown in Fig. 3.15. Two circular silver

nanotubes (#1 and #2) have the same outer radius a, inner radius b, and refractive index

a(l)= \/; . They are separated by the air-gap s, with L being the distance between their
axes. We assume that beam of particles (1.1) passes between the tubes in parallel to the
x direction at the distance h from its surface. The Cartesian and the local and global

polar coordinates are chosen as depicted.

@

Fig. 3.15 Cross-sectional geometry of electron beam moving between two identical

circular silver nanotubes
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The formulation of the 2-D wave-scattering problem for the DR field, i.e. the

scattered field function, involves the Helmholtz equation, the penetrable-boundary
conditions at tube contours, the Sommerfeld radiation condition at infinity, and the
condition of local power finiteness. The solution uniqueness is guaranteed by these
conditions.

As the nanotube dimer partial domains are different from solid wire case, below
we present complete derivation of the resulting matrix equations.

Inside each void and tube (domains I and I1), we expand the magnetic field in the

azimuthal Fourier series, respectively,

H™ ™ (r,p)=">" Yy, (kr)e™, 1, <b,p=12, (3.1)

H" (e )= [P, (kar,) +dPH, (kar,) [€™ b<r, <a, (3.2)

M=—o0

and seek the scattered field (DR field) as follows:

He(r,p)= > > zPH (kr,)e™”, r >a,re(2), (3.3)

p=1,2 m=—0

At the inner wall of each tube, at r,=b, p=1,2, the boundary conditions

demand that both H, and E(/,p are continuous,
H;nt( p)I — H;nt(p),ll ’ E;r:)t( p)l — E;)r:’t(p),ll ’ (34)

As these conditions are valid for all 0<¢p, <27, they allow us to exclude some of

the unknown coefficients. The boundary conditions at the other walls, at r,=a and
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O£¢p<27r, are

HMEON Z O 4 e Eg:(p)’" = Egp +Ey (3.5)

Substituting into (3.5) the series expressions (3.2), (3.4) and a similar expansion

of the beam field (1.2), and introducing new unknowns, x{» =z{w , and
W_,=D"w_,, w_,=n!(2/ka)", we derive two coupled infinite-matrix equations,

similar to one found in section 2.4 for p = 1,2.

12) 1(1,2)
f7F —f "7F,

V. & :
02+ —m " x®Dw, (F)""H,,_, (KL) = S , m=0,+1£2,..,
x4 4 ) n;@ x®w (Fi)"™H__ (kL) =S WD, m
(3.6)
where the prime denotes the differentiation in argument and
V. =J_(ka)F —J (ka)F,, (3.7)
D,=H,(ka)F —H/ (ka)F,, (3.8)
F. =J.(kad)+H,_(kad)S, (kb,a), (3.9)
F =ald! (kaa)+aH, (kea)S, (kb,a), (3.10)
S, (Kb, ar) = aJm(kb)J,m(kab) —J.(kb)J  (kab) | (3.11)
J (kb)H  (kab) —ad! (kb)H  (kab)
fn(]l,Z) — iAe_q(L/Zih)ime(ka)(1$ y)mﬂ—mﬂ’ (312)

Note that (3.6) reduces to the twin solid wire case of the previous section if
b — 0 that entails S_ =y =d” =0,

Similar to the twin solid-wire case of section 3.2, the set (3.6) is the Fredholm
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second kind matrix equation of block (2x2) type (see also [122, 128, 137]). Then the

Fredholm theorems guarantee that its numerical solution (after truncation of each block

to finite order N, ) converges to the exact solution for N, — oo .

On using the large-argument asymptotic expressions for the Hankel functions, far

from the scatterer (r »«) the DR field takes the form of outgoing cylindrical wave,

similar to
H*(r, ) = (2/ izkr)"* exp(ikr)®(p), (3.13)

where the angular pattern is a function of the global polar coordinate, ¢. On the
truncation of the matrix equation (3.6), this function depends on the coefficients z'” as
follows:

O(p,N) =D,(p,N) + D, (¢, N),

Fhising - 3.14
@,,(p,N) =" Z (—i)"w'z2e™ (3.14)
m=—N

Then, the partial SCS, associated with the DR power radiated into the lower and

the upper half-spaces, are found as
ol (N)=2(zk)" [ |o(p,N) do, (3.15)

The partial absorption cross-sections (ACS) can be found from the Optical
Theorem, adapted to the DR analysis as in the previous sections, or, equivalently,
through the integration of the Poynting vector flux over the outer contour of each

nanotube,

oS (N) = Z |3 [ Im(aF,Fr), (3.16)

|A2
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where F_(-)and F’(-) are defined in (3.9) and (3.10), and

042 =zkbay\? [ad, (Kb)H, (kab) - J; (kb)H,, (kab)] (3.17)

In computations, we use experimental data of [93] for the dielectric function of
silver. To check the code convergence for a varying matrix-block truncation order N and

visualize its rate, we have computed the relative error, in the far-field SCS, with respect

to the data computed at N, =30,

erl Z(Ntr)

tr

The typical plots of such errors are presented in Fig. 3.16 (a).
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Fig. 3.16 Far-field computation error versus the matrix block truncation number N, fo

several beam velocities (a) and comparison of the far field patterns calculated by
COMSOL and in-house code (b). BPM model consists of two silver tubes with radii a =
50 nm and b = 45 nm, separated by the air gap of s = 20 nm; beam shift is h =5 nm and

wavelength is 2 =332 nm
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As visible, 5-6-digit accuracy in the far field is achieved if the truncation order is

N, > max[kL,(kaa/,B)]+5. Thus, the slower the beam, the larger the matrix size N,
needed for the same accuracy. This is a result of the slower decay of the elements of the
right-hand part vector (3.12) at \m\ — o0, controlled by the factor ,B_‘m‘. Equivalently, as

[ <1, it means that electric size of the scatterer illuminated with the incident field (1.2)
must be increased by the “beam factor,” 1/ , in comparison to the plane-wave
scattering.

The far-field error is by an order smaller than the near-field error that is explained

by the presence of the factor 1/ w_in (3.14). Note that the effect of Zis the same both in

the far and near zone: slower beams request larger matrices to be inverted, for the same
accuracy. Besides of g, the electric size of the whole dimer is to be accounted for when
selecting N, . Still besides, the rate of convergence degrades for very small values of the
air gap width, s.

It should be noted that, to satisfy the Fredholm theorem conditions, the tubes must
not touch each other or the beam trajectory.

To support our results, we present, in Fig. 3.16 (b), a comparison of two
normalized far-field patterns, computed with our code based on (3.6), where N = 30, and
with  COMSOL commercial software. The agreement is quite good, while the
computation time needed by COMSOL is approximately 30 times larger. Still, from the
mathematical point of view, this comparison serves as a validation of COMSOL rather

than our code because COMSOL’s accuracy is not controlled.
3.3.2 Diffraction radiation from small and large radius nanotubes

Keeping in mind BPM applications, we look for the features of DR that can serve
as indicators of the beam shift from the central-symmetric position between the twin
silver nanotubes. Therefore, we compute the spectra, in the visible-light range, of the
partial SCS of the studied configuration, excited by symmetric and shifted beams. The
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plots in Fig. 3.17 correspond to the nanotubes of the 55-nm outer radius and 5-nm wall

thickness, with the air gap width s = 20 nm. Two trajectories of particles are considered:
shifted by h = 5 nm (solid and dashed curves) and not shifted (h = 0, dotted curves), and

three beam velocities, £ =0.9,0.5and 0.3. In each case, we can see sharp resonances.

This is because LSP modes of single silver tube are well separated, in frequency, for
different azimuthal orders, m [95,138]. Moreover, the silver nanotube modes are hybrid,
I.e. formed as sums and differences of the plasmon modes of the inner and outer tube

surfaces. Their wavelengths, respectively, satisfy the quasi-static equations [138],

g(1F) =1+ 2{[“ a—_b)m il} | (3.18)

a

More accurately, in a twin-circular-nanotube plasmonic PM, these modes
hybridize further and form quartets of closely spaced “supermodes,” with mode fields
belonging to four classes of symmetry with respect to the x and y-axes [122]. The beam
field (1.2) is anti-symmetric with respect to the beam trajectory. Therefore, two of four
“supermodes” of each type cannot be excited by the symmetrically flowing beam (they
remain “dark’) however they can shine if the beam is shifted (h # 0). Indeed, this is
actually what we observe at A = 803 nm in Fig. 3.17, provided that the beam is non-
relativistic, 5=0.3.

Such interpretation is fully supported by the near-field patterns in the resonances,

shown in Fig. 3.18. Panels (a) and (b) and (c) demonstrate the field portraits where the
“dipole” LSP mode Pl(_) dominates on each tube; however, the field symmetry on (a),

(b) is orthogonal to that on (c).

The plots in Fig. 3.19 show the visible-light spectra of partial SCS for the pair of
nanotubes with much larger radii of a = 200 nm and b = 195 nm, so that the wall
thickness is again 5 nm, with the air-gap of s = 20 nm. The electron-beam velocities are

the same as in the previous case.



| a=55 nm,b=50 nm, h=5 nm, =20 nm, |

0,.= = ¢, =03

0- T L} T T T
200 300 400 500 600 700 800 900 1000
}\., nm

100

Fig. 3.17 Normalized partial SCS versus the wavelength for twin silver tubes with radii
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Fig. 3.18 In-resonance near magnetic field and far field scattering patterns of twin

nanotube with radii a=55 nm, b =50 nm, air gap width s = 20 nm and beam shifth =5
nm (a), (c) and h =0 (b), (d)
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The trajectory shift is h = 5 nm and the data for zero shift are also shown as

dotted curves.

As before, one can see the sharp resonance peaks of the DR power on the
wavelengths of the hybrid LSP supermodes of the silver tubes. They form a nearly
periodic sequence where each peak corresponds to different azimuth index, m=1,2, ....
Note that they are much sharper than the collective LSP peaks in the DR power for

electron-beam excited solid silver nanowire or a pair of them.
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Fig. 3.19 The same as in Fig. 3.17 for twin silver tubes with radii a =200 nm and b =

195 nm (@) and its zoom between the wavelengths of 600 nm and 900 nm (b)

Similar to the previous case, some of the peaks appear only if the beam is shifted
from the center of the air-gap. For instance, this takes place at A = 733 nm and 877 nm.

The corresponding to them hybrid LSP supermodes of twin nanotubes remain
“dark” under the excitation by the centrally flowing beam, the field (1.2) of which is
orthogonal to their eigenfields in symmetry. These modes, however, start resonating
(i.e. become “bright”) if the beam is shifted, because this leads to appearance of the part
of the incident field that matches the mode symmetry.

The in-resonance near-field patterns in Fig. 3.20 correspond to the frequencies

marked with arrows in Fig. 3.19. They reveal that the higher-order LSP modes P3(_)
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dominate on each tube on panels (a), (b) and (c), however, with different “supermode”

symmetries. On panel (e), the field of the LSP mode Pz(_) can be identified. The peaks at

the shorter wavelengths correspond to the larger LSP indices m.
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Fig. 3.20 In-resonance near magnetic field and far field scattering patterns of twin nanotube

BPM with tube radii a= 200 nm, b =195 nm, air gap s = 20 nm and beam shift h =5 nm
(@), (c), (e) and h =0 (b), (d), (f). marked with arrows in Fig. 2.19
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3.3.3 Absorption of light by twin nanotubes

As the silver is sizably lossy in the visible-light range, the absorbed in the
nanotubes power is not expected to be small. We characterize this power with the aid of
two partial ACS, given by (3.15). In Fig. 3.21, we present the spectra of ACS for the
same two configurations of twin-nanotube BPM, however only for the case of the
trajectory, shifted by 5 nm from the central-symmetrical position. They show the
resonances on the hybrid LSP supermodes of twin silver nanotubes. As discussed above,
some of these supermodes are not excited by a non-shifted beam.
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Fig. 3.21 Normalized partial ACS versus the wavelength for twin silver tubes with radii
a=55nm, b=50 nm (a), and a= 200 nm, b= 195 nm (b) beam shift h =5 nm, and air
gap width s =20 nm

A, nm

In general, one can see that the absorption in nanotubes is roughly by an order of
magnitude larger than the scattering. This is in full agreement with similar relationship
between the plane-wave scattering and absorption by metal nanoparticles in the visible
range [19,20].

To provide a better vision of the dependence of total SCS and ACS on the
wavelength and the tube wall thickness, we present the color maps of these quantities
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for the not-shifted and shifted beam in Fig. 3.22 and Fig. 3.23, respectively. White

dashed curves are predicted by the quasi-static analysis of hybrid LSP modes Pnﬁ_) of

stand-alone nanotube, see [138]. These maps visualize the resonance on the supermode

Pl(_) of the y-even family, marked with arrow, which is present if h =5 nm, however

remains “dark” if the beam is not shifted.
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Fig. 3.22 Color maps of total SCS (a) and ACS (b) versus the wavelength and the tube

thickness for twin silver tubes with inner radius b = 50 nm, air gap width s = 20 nm,

beam velocity £ = 0.3, and no beam shift (h = 0)
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Fig. 3.23 The same as in Fig. 3.22 however for the beam shift h =5 nm
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3.3.4 Estimation of electron-beam power loss

Presented above are the data for partial and total SCS and ACS, which are
traditional quantities in the analysis of optical scattering. Together, they yield the
extinction cross-section, which characterizes the total power taken from the incident
field in the presence of scatterers. Still, unlike the traditional plane-wave scattering, the
power carried by the beam field (1.2) through the plane, normal to its trajectory, is

finite. This power is given by the equation

Py=AZ,f (ky)" (3.19)

Therefore, it is useful to compare (3.19) with the scattered and the absorbed

powers, given by P_... =% o In Fig. 3.24 and 3.25, we show the spectra of the

sc/abs *

normalized quantities, P_/ PR, and P, /P,, computed via the data of Fig. 3.17 and 3.19,

respectively. As one can see, if the beam velocity does not exceed g = 0.5, the radiated
power remains below 5% of the beam power even in the resonances, both for small (a =
55 nm) and large (a = 200 nm) nanotube dimers. This validates the DR model based on
the assumption that the beam velocity is fixed.

The power, absorbed in the silver nanotubes, is several dozen times larger than
the DR power, and in the LSP-mode resonances it can exceed 50% if g = 0.5 for a
small-tube dimer and even 70% for a large-tube dimer. Therefore, the absorption plays
more important part than the scattering, in the total reduction of the beam power. This
reminds us that even the most sophisticated particle accelerators sometimes suffer of
unwanted heating incidents [139].

Additionally, this tells that the fundamental assumption of the DR modelling, that
the beam is not influenced by the presence of imperfect scatterers, holds true only
provided that the scatterers are not tuned to high-Q resonances and, generally speaking,
if the beam is not relativistic. For the twin nanotubes studied here, the safe limit, in
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terms of velocity, is around = 0.2: then the total power loss of the beam is within 10%,

some 1% of which goes to DR and the rest — to the heating. To widen the area of
applicability of the DR model, one should consider the configurations, where the

scatterers are placed at the larger distances from the beam trajectory.
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Fig. 3.24 Partial SCS (a) and ACS (b) versus the wavelength for twin silver tubes with
radii a= 55 nm, b =50 nm, beam shift h =5, and air gap width s = 20 nm
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Fig. 3.25 The same as in Fig. 3.30 for tubes with radii a= 200 nm, b= 195 nm
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Conclusions to Chapter 3

- We have studied the optical-range DR that accompanies the motion of the
charged-particle beam near a stand-alone plasmonic silver nanowire that has never been
considered earlier. As we have shown, both the radiated and the absorbed powers are
enhanced near the natural mode wavelengths of the plasmonic nanowire as open
resonator. In this case, in-resonance fields are shaped as rotating cylindrical waves made
of two degenerate LSP modes with nearly /2 phase shift. Unlike DR in the presence of
a dielectric nanowire, a metal nanowire placed in vacuum also displays the effect of
“invisibility” at the wavelength close to the optical transparency of metal.

- Besides, we have investigated, for the first time to the best of our knowledge,
how the visible-light DR is emitted if a beam moves between a pair of identical circular
silver nanowires. As we have found, they behave as optically coupled plasmonic open
resonators. Because of the losses in silver, their LSP supermodes (that is, hybrid modes)
have rather low Q-factors however are still able to enhance the DR at the corresponding
wavelengths. If the beam trajectory shifts away from the central (symmetrical) position
between the silver wires, then the near field pattern also loses symmetry. This is better
visible if the wire radius is truly sub-wavelength and the beam is non-relativistic. Still,
unlike a pair of high refractive index dielectric nanowires, the low values of LSP mode
Q-factors and their clustering near to the same wavelength show that the solid circular
metal wires are not the optimum shape for the applications related to the optical beam-
position monitors.

- Trying to overcome the above mentioned circumstances, we have shown, using
a trusted and efficient in-house computational instrument, that the modulated beam of
charged particles can be monitored noninvasively by measuring the power of the DR, if
the beam passes between two identical thin silver nanotubes. This power, as a function
of the modulation wavelength, displays sharp peaks on the hybrid LSP supermodes of
twin nanotubes, now well separated for the different azimuthal orders. Some of these

modes are excited only if the beam trajectory is shifted away from the central-
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symmetrical position, due to the symmetry properties of the corresponding supermode

field. This effect can be used in the design of optical-range BPMs. We have also shown,
for the first time in our opinion, that the area of good adequacy of the DR model is
limited, in the presence of nanoscale resonant scatterers, to the non-relativistic beam

velocities.
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CHAPTER 4 DIFFRACTION RADIATION OF A BEAM OF PARTICLES

MOVING NEAR GRAPHENE-COVERED DIELECTRIC NANOWIRES

In this chapter, the DR-caused scattering and absorption characteristics in the
visible range are numerically investigated for a stand-alone circular dielectric nanowire
covered with graphene, twin graphene-coated nanowires configuration and finite array
of circular graphene-covered dielectric nanowires. As in previous chapters, we assume
that the beam velocity is fixed and use the separation of variables in local coordinates
and the addition theorems for cylindrical functions to cast the DR problem to a
Fredholm second-kind matrix equation. For the zero-thickness graphene covers, the
two-side resistive boundary conditions are requested. Here the electron conductivity and
hence the surface impedance of graphene are determined from the Kubo formalism. The
materials of Chapter 4 are published in works [A2, A7-9, All, Al13].

4.1 Single circular graphene-coated nanowire: resonances on the plasmon and

whispering-gallery modes

The DR problem for the modulated electron beam moving near stand-alone
graphene-coated nanowire (see Fig. 4.1) is similar to the DR problem of the beam

exciting a dielectric circular nanowire, as presented in sections 2.3. However, the
difference is in the graphene material of the dielectric («=+/¢, k,=aw/c=ak) wire

cover. Graphene properties were explained in section 1.4 and its surface impedance was
discussed there.

4.1.1 Basic equations

As in preceding chapters, the incident field in the DR problem is the free-space
electron-beam field given by (1.2), and the scattered field can be presented as (2.22).
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Fig. 4.1 Cross-sectional geometry of electron beam moving over a dielectric circular

v

nanowire coated with graphene

The only difference in the problem formulation is in the boundary conditions,
which account for the surface impedance (or resistivity) of graphene, Z, and is given by
(1.5). These boundary conditions are two: one tells that the tangential electric field

should be continuous across the coated wire contour,
0 ext __ int(p)
E(p (a’ ¢) + E(/) (a’ ¢) - E(p P (a’ ¢) 1 (4'1)

and the other tells that the tangential magnetic field has a jump proportional to the

surface conductivity of graphene,
E;™(a,0) +Ep(a,p) + EJ*(a,9) =222, H " (a,p) -H](a,9) - H;" (a.9) |, (4.2)

Then, substituting the field expansions (2.22) into (4.2), we obtain

Zfy . ZohokH,(ka) _ Za kad; (kaa)

4.3
ik ik ike (43)
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Zyfy . ZhkHy(ka) | Zga kad (kea)
ik ik ike

After transformations, we get the following equations:

=277,(a,J, (kaa) - f, —b H,(ka)], (4.4)

b H! (ka) —a'a_J! (kea) =—f/, (4.5-a)
iZb H_(ka)+a'a J! (kea)—iZa J (kaa)=—i""Zf | (4.5-b)

Here, the functions f_ and f' are the same as (2.26). Then, the field expansion

coefficients are found as the following analytical expressions:

a, =[-i"Zf H’ (ka)+izf'H_(ka)](D, )™, (4.6-3)
b, ={~f,| I (kard)a* —iZ], (ked) |- ;3! (k) "HD,) ™,  (4.6-b)

where

D, = H,,(ka)J,, (kaa)a* —iz[ H, (ka)J, (kaa) — H, (ka)J;, (kaa)a ], (4.7)

The DR characteristics - SCS and ECS - are the same as for the single dielectric
wire and expressed as (1.13) and (1.15). Meanwhile, if the dielectric is assumed

lossless, then the absorption cross section (ACS) is given by (1.10).

Considering that w(g) =H® + H° —=H™, then

2

oabs=A’§—;2Rez 3 a3 (k)b H (k) fy| (4.8)

Additionally, as we have shown in section 1.5, ACS can be also found with the
aid of SCS and ECS from the Optic Theorem - see (1.12).
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4.1.2 Natural modes of single graphene-covered dielectric wire

A stand-alone circular dielectric wire covered with graphene is a composite open
resonator, which supports the natural modes of two families: dielectric-rod modes,

which obtain the features of the whispering-gallery (WG) modes if the radius a and/or

refractive index a =+/¢ is getting larger, and the plasmon modes of the graphene cover.
On the circular graphene-coated wire, complex frequencies of all natural modes
satisfy independent equations D_=0 (m=0,1,...), where D_ is given by (4.7). The
plasmon modes appear in every non-zero azimuthal order, m = 1,2, ... [141]. In [99],
they have been found approximately, after using small-argument asymptotics in (4.7).
However, by analogy to a silver wire [95], they can be also viewed as the natural modes
of the traveling-wave resonator formed by the closed contour of graphene cover. Then,
neglecting the curvature of the graphene layer, the following empiric characteristic

equation can be established:
exp(igp,astﬁa)zl, (4.9)

where ¢ is the complex wavenumber of the plasmon wave propagating along a flat

plasm

infinite graphene monolayer located at the interface between air and dielectric. The

roots of this equation are, obviously,g....a=m, m=212,... and correspond to the

plasm

plasmon modes, Py. The value of g can be found analytically — see equation (31) in

plasm

[142], where we take into account that \Z\z >1in THz and IR ranges,

Qb = K21+ )| Z*(A+£) -3 +0( Z[?) | (4.10)

plasm

Taking into account that graphene’s normalized surface impedance Z depends on

the frequency as (1.5) and neglecting intraband conductivity (1.3), we conclude that
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-1
gplasm zk2(8+1)é(1+_j’ (411)

where € is a value that follows from (1.3), namely,

2
Q=%2KT | e | opn| 14 exp| —Ho (4.12)
7h KT KT

Then, the plasmon mode P, resonance frequencies (i.e. real parts of the complex

natural frequencies) are found approximately as

1/2
1| mcQ
fPr— 4.13
" 27Z|:a(8+1):| (4.13)

Note that expression (4.13) agrees with equation (12) of [99] (here, one has to
account for the different systems of units, CGS in [99] and SI in our work). Besides, the
Q-factors of the plasmon modes, in the same approximation (i.e. the absorption Q-

factors), are found to be proportional to the electron relaxation time,

p _ der meQ )
" A+ a

(4.14)

As one can see, both resonance frequencies and Q-factors of the plasmon modes
of a graphene-covered circular dielectric wire grow as a square-root of the mode index.
Besides, in view of (4.12) they grow approximately as a square-root of the chemical
potential, which, in its turn, is known to be proportional to DC bias. Therefore, higher-
order plasmon modes have certain advantage, in the higher Q-factors, before the lower-

index modes including the principal “dipole” mode, P1. The growth with m is limited,



114
however, by the radiation losses, which were neglected when deriving (4.13) and (4.14).

The spectral distance between the adjacent plasmon modes gets smaller with m.

The dielectric-wire modes, perturbed by the presence of graphene cover, also
correspond to the (other) roots of equations D, =0; if |Z|>>1 and m>>ka>>m/«,
they obtain the features of the WG modes, such as periodically spaced frequencies and
high Q-factors. However, due to the losses in graphene, the exponential growth of the
Q-factors with m and o is now limited at the level, determined by the graphene
parameters, 7, zz_ and T. That limit value has the order of O(ImZ/ ReZ).

Note also that, in a stand-alone circular resonator, all modes with m > 1 are

doubly degenerate, because sinmg and cosmg field dependences are orthogonal

however lead to the identical characteristic equations.

4.2 Twin graphene-coated nanowires as a model of beam position monitor

Here, we consider a flat modulated beam of electrons flowing along the straight
trajectory at the distance h from the x-axis, with a fixed velocity v = £ as described in
section 1.2. Two identical circular dielectric wires with graphene covers have the radius
a and refractive index o =+/e - see Fig. 4.2. They are placed in the free space with the
air-gap s and L is the distance between their axes. We assume that the beam of particles
(1.2) flies in parallel to the x direction between the wires at the distance h from the

center of the air-gap. We introduce the Cartesian and the local (r.,,¢,,) and global

(r,¢) polar coordinates as shown in Fig. 4.2.

4.2.1 Basic equations

In the case of the H-polarization, one can derive all the field components from the

z-component of the magnetic field vector.
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()

Fig. 4.2 Cross-sectional geometry of electron beam moving between a pair of identical

dielectric circular nanowires with graphene covers

Omitting the index z, we look for the total field as (2.5). Inside each wire and off
them (domains (1.1), (1.2) and (2)), we expand the field in the azimuthal Fourier series

in the local polar coordinates as in (2.6) and (2.7), respectively

The boundary conditions at the wire contours, r,=a, 0<¢, <27 (p=12), are

the conditions for a zero-thickness resistive sheet placed at the interface between the
free space and dielectric; they are expressed as (4.1), (4.2).
Here, the graphene complex-valued surface impedance in the THz range (where

the interband conductivity can be safely neglected [21-23,107]) is

Z,Z( o, 1;,7,T) =1/ 0,y (4.15)

and was also explained in detail in section 1.4.
On expanding the beam field (1.2) in terms of the Fourier series in the local

coordinates similar to section 2.1, we obtain
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HY (1, ¢,) = FABe 1M ime(krl,z)(l%yj e, (4.16)

Mm=—o0

Then, we substitute the series (2.6), (2.7) and (4.16) into the conditions (4.1) and
(4.2) and use the Graf addition theorem (2.9) for the cylindrical functions to transfer the
expansions from one local coordinate system to the other. Finally, on introducing new

unknowns, z{? =x{Pw ,w_ =nl(2/ka)*",w_,=(-D"w_, we derive two

n>0

coupled infinite-matrix equations, similar to (2.33), however, containing new terms

dependent on Z,

12

Xﬂ‘z) +W, \é—m Z (ii)n_m WnHm—n (kL)Xr(1j) =W, FB—, m=0,£1,%2,..,,

(4.17)
where
V. =iz (ka)d! (kaa) +ad! (ka)d _(kaa)—J _(ka)d! (kaa), (4.18)
D =iZH’ (ka)J’ (kaa) + aH! (ka)J, (kea) — H_(ka)d! (kaa),  (4.19)
F&2 =iz /0273 (kea) - £/l _(kaa) - 23 (kaa), (4.20)
f&? =g Ae 9 ENINI (ka)AF )" B, (4.21)
f/02 = 5f 2 [ 5(ka) (4.22)

What is important, thanks to the re-scaling of the unknowns with the aid of the

factors w , the matrix equation (4.17) is the Fredholm second-kind operator equation

provided that L > 2a (see the explanations in [24-26]; note that here the presence of the
terms with Z™* does not spoil this property). This guarantees the convergence of the
numerical solution of (4.17), in mathematical sense: if each block of (4.17) is truncated

to finite order N_, then, by taking progressively larger values of N, , one can minimize

tr? tr?
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+Ngr

the error in finding the coefficients {xr(,}'z)} , In principle, to machine precision.

m=—N,

Note that without the mentioned re-scaling, the matrix equation of this kind can provide,
at best, the accurate values of the first 2-3 digits and hence remains impractical in the
case of sharp resonances. This crucial circumstance is frequently overlooked or
neglected even in the tutorials - see, for instance, [82, 85, 99, 129, 140].

As we are interested in the modeling of BPM, we have to compute some DR
characteristics, which can be observable in practical situations. As usual, such
characteristics are related to the field far from the scatterers. The partial SCS
corresponding to the DR power, radiated to the lower and the upper half-spaces, are
given by (1.8).

Still, the scattering is accompanied with the absorption because graphene is a

lossy material, see (4.15). Therefore, we introduce the partial ACS, found as

ol =ra zzeﬂzz > ‘—yr(,l'z)\]n (kaa) + 42 (ka) + zFPHW (ka) +  (4.23)

2

3,(k@) 3 ()" ZEIHE, (kL)

Note that the sum of the partial SCS and ACS is the extinction cross-section,

G =L + 02 1+ 59 + Q. This value is linked to the DR far-field amplitude,

abs

1

(D(Q)) — Z (—i)me |:e—§ikLsin(er(nl) n ezikLSin(DZ,(nz)i|eim¢, (424)

computed in the directions of the so-called complex angles of incidence (see section 1.5
and [25] for details),

4

+00 . e_qhz(l) eqhz(z)
O =———€ *?Re D ()" B"w, m_ m_ (4.25)
KAS = A+)" A-7)
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This is the Optical Theorem for the DR, which accompanies the motion of the
modulated beam of charged particles between scattering obstacles. It can be used for a
partial validation of the computed results. In our analysis, this expression has been

satisfied at the level of machine precision.

4.2.2 Natural modes of graphene-covered dimer

Configuration of twin circular dielectric wires, shown in Fig. 4.2 and known as
dimer, is even more complicated open resonator than a stand-alone graphene-covered
wire, because the modes of individual wires are now optically coupled. Mathematically,
this is visible from the fact that now the mode equations do not split into the azimuthal
orders and their natural frequencies are the roots of the determinantal equation,
generated by the whole matrix (4.18). Physically, the optical coupling forces the modes
to hybridize; to emphasize the coupling, the hybrid modes of the dimer are called
“supermodes” [122]. Due to the presence of two lines of symmetry, in the cross-section
(which are the x and the y axes), all supermodes of a circular-wire dimer split into four
orthogonal classes according to the field symmetry (even dependence) or anti-symmetry
(odd dependence) along these axes. They are usually denoted as EE, EO, OE and OO
classes and can be studied separately after the separation of corresponding
determinantal equations [122].

Therefore, for a dimer of twin circular open resonators, instead of a single doubly
degenerate LSP mode of each wire, a quartet of closely spaced LSP supermodes
appears. A numerical study of the supermodes of twin dielectric disks has shown (see
[122]) that each quartet of supermodes forms two even closer spaced doublets, of the
EE and OE modes and the EO and OO modes, respectively. Recently, the same has
been demonstrated for the LSP supermodes of a dimer of graphene-covered dielectric
wires [99]. Numerical analysis of the supermodes of graphene-covered dimer will be
presented in Chapter 5 in the LEP formulation.
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4.2.3 Numerical results: resonances on the plasmon supermodes

In the case of 2-D modelling, a design of DR-based BPM sensor involves not a
single scatterer but two identical ones, for instance, the edges of a slot [16], so that the
beam moves between them. Then a difference in the DR intensity or in the angular
radiation patterns from the opposite sides of the beam trajectory can serve as indicator
of a shift in the beam position. This explains the interest in the twin solid dielectric
nanowire and twin noble-metal solid-wire and nanotube BPM configurations, studied in
previous chapters. Note that DR from a dimer of spherical dielectric particles has been
studied in [143] in approximate manner, using the concept of the averaged
polarizability.

In the full-wave analysis, our goal is to investigate how the position of the beam
trajectory influences the power of DR and the excitation of high-Q plasmon resonances.
Figs. 4.3 to 4.5 present the results of the calculation of normalized partial SCS and ACS
versus the frequency for twin graphene-covered dielectric nanowires with radius
a =500 nm and 100 nm, separated by the air gap of the width s = 100 nm. The relative
dielectric constant of the wire material is assumed to be 2.4. Graphene parameters are
T = 300°K, 7z = 0.5 ps, and several values of the chemical potential are tried. Two beams
with the same relative velocity p = 0.5 are considered: not shifted from the central-
symmetric position, h = 0, and shifted by h = 40 nm.

The truncation order of the blocks of the matrix equation (4.19) is selected

according to the rule, explained in [41]: N, = max{kaa, ka/ f}+5 that guarantees
5 correct digits in the found coefficients. This rule is especially important for the non-
relativistic beams, S <<1, because the right-hand part coefficients in (4.18) behave as
O[(ka/28)™] if In|>ka, i.e. drop slowly.

For the selected geometrical and material parameters, single wire plasmon-mode
resonance frequencies are well predicted by equation (4.13) and get to the IR frequency

range. Small shifts from (4.13), for the dimer supermodes, can be also estimated [99].



120
o0 a=0.5 um s=0.1 um p=0.5 p =0.5eVe=24

3 PT+PT T Oy Oapey s N=40 M
11 > I Opy O pep s N= 40 M
0.1 ‘-'; ] P:°+P:° T Osc1Osc2 > h=0nm

© 3 : —oc_ .6, ;h=0nm

<t absl’“abs2 * ;

o 0.01+ : :
-
o 1E-34
& ] :
1E-4-§
1E-5

1E-61 . ; —_— 3 ;

5 10 15 20 25

Frequency, THz

Fig. 4.3 Normalized partial SCS and ACS versus the frequency for twin dielectric
nanowires covered with graphene with parameters as indicated and beam shifts h = 0
and 40 nm. Dotted vertical lines are the single-wire plasmon-mode frequencies,
predicted by eq. (4.13)

As can be seen in Fig. 4.3, if the wire radius is a = 500 nm and graphene’s
chemical potential is uc = 0.5 eV, there are a few lower-frequency plasmon-mode
resonances both in the scattering and in the absorption. However, they are almost the
same both with and without the shift of the beam trajectory from the central-symmetric
position, where it passes through the air-gap center. This means that the supermodes of
twin-wire dimer that belong to the classes EE and OE (“dark™ if the shift is absent)
remain very weakly excited (see small bumps on the red side of (4.14), unlike their
sister-modes of the EO and OO classes. The latter supermodes shine as one peak (i.e.
are still unresolved) in both cases on the blue side of each frequency, predicted by
(4.14). This unfavorable for the BPM design situation can be overcome if the Q-factors
of the plasmon supermodes are made larger. Equations (4.15) and (4.13) tell that this
can be achieved by either making the wire radius smaller or increasing the chemical
potential of graphene, i.e. using a larger DC bias. This effect is accompanied with a
frequency up-shift, see (4.14); this holds for the supermodes of each symmetry class.

While the fabrication of thinner wires seems to be realistic, the largest reported so
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far value of graphene’s chemical potential is only 1 eV (still, larger values can become
realistic in future). Indeed, the computations made for a = 100 nm with x. = 0.5 eV and
1 eV (see the plots in Fig. 4.4 and Fig. 4.5, respectively), reveal the same but sharper
resonances on the still unresolved mode doublets EO-OO, both in TSCS and ACS.
However, now a shift of the beam trajectory triggers the excitation of new resonances
on the unresolved mode doublets EE-OE, which remained “dark™ if the beam was not
shifted. Such resonances are associated with the “supermodes” of twin wires, whose

symmetry is orthogonal to the beam field (1.2).
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Fig. 4.4 The same as in Fig. 4.3 for the radius a= 0.1 pm.
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Fig. 4.5 The same as in Fig. 4.4 for the chemical potential =1 eV
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This is exactly the same effect, which we are looking for, to be used in BPM

design. Note that if a larger, say, 10 eV, chemical potential could be realized, then the
mentioned new peaks become impressively larger and sharper (not shown here).

Earlier similar effect was found in the nanosize models of BPMs built on twin
high-refractive-index dielectric wires in section 2.4 and twin silver nanotubes in section
3.3. Note that in those sections, the range corresponded to the visible-light frequencies
while what we discuss here takes place at one order lower IR frequencies. Of course, in
the covered circular dielectric wires, a modulated beam of particles can excite the
resonances on the WG modes as well (slightly perturbed by the presence of graphene
cover), however, for the wire radius taken here they become visible at the frequencies
well above 100 THz.

For the BPM applications, it is interesting to know how the intensity of new
resonances depends on the beam shift value. As seen in Fig. 4.6, the it is approximately

proportional to the trajectory displacement.

a=50 nm s=10 nm =0.5 n =10eV e=2.4

0.014
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Frequency, THz

Fig. 4.6 Variation of the magnitude of new resonance on the beam displacement h

The near fields, computed in the peaks of TSCS in Fig. 4.5 for the case of the
shifted beam trajectory, are shown in Fig. 4.7.
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Fig. 4.7 In-resonance near magnetic field magnitude (left) and phase (right) patterns of
twin dielectric nanowires covered with graphene with radius a = 0.1 um, the chemical
potential u.=1 eV, beam shift h = 40 nm and air gap width s=0.1 um

Here, the left panel in each row corresponds to the field magnitude pattern while
the right one corresponds to the field phase pattern. These patterns demonstrate the
expected number of the field variations around the wires and support our interpretation
of the plasmon-mode resonances as those associated with still unresolved supermode
pairs of the y-even (EE and OE) and y-odd (EO and OO) classes of symmetry.
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4.3 Finite array of graphene-coated nanowires: resonances on the lattice modes

4.3.1 DR effect for two in-line graphene-covered nanowires

This subsection is devoted to the analysis of the resonance effects in the DR from
the same dimer PM made of circular dielectric nanowires coated with graphene,
however, with a modulated electron beam moving above the wires.

This configuration is not promising for BPM, however, it is attractive as element
of the other devices, where electron beams are exploited. Today, after almost a century
of conventional particle accelerators, which have been important in fundamental physics
and other applications, large attention is attracted to the co-called dielectric laser
accelerators (DLA) [144, 145]. DLAs are micrometer-scale dielectric structures excited
by external laser light sources. Due to modern nanofabrication techniques, they can be
compact, inexpensive and still provide efficient acceleration due to high electric-field
gradients [146]. These devices provide acceleration by using the intensive near fields of
laser-driven periodic dielectric structures, i.e. gratings. Additionally, they can
incorporate Bragg reflectors to eliminate the incident wave transmission through the
grating. A promising material for the DLA is silicon, which has high dielectric
permittivity (¢ = 12) and good thermal conductivity. Besides, its nanofabrication
infrastructure is well advanced as examined in [147].

Most popular DLA designs are based on various gratings of several hundred
circular silicon nanorods [147,148]. They are less expensive and simpler than others and
can be mass-produced using available nanofabrication methods. Consequently,
electromagnetic analysis of such gratings is interesting and important.

For the DLA designing, it is crucial to have a high electric field gradient near the
grating in the beam motion direction. On nanoscale, this can be achieved in the natural-
mode resonances using the high-index materials like silicon. Still, there is an alternative:

plasmon modes supported by the graphene-covered low-index scatterers. Therefore, we
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chose the research configuration of two dielectric rods covered with graphene shown in

Fig. 4.8, as a two-section element of a larger grating of DLA.

Fig. 4.8 Cross-sectional geometry of a dimer of in line graphene-covered circular

dielectric nanowires, excited by a modulated electron beam moving above them

Fig. 4.8 presents the considered geometry of the DR problem. Identical dielectric
nanowires hare relative permittivity ¢, radius a, and the distance between their axes is L.
The harmonically modulated, in density, beam of electrons flows at the distance h from
the nanorod axes with the relative velocity v = fc (8 < 1). In Fig. 4.8, we explain the

Cartesian and the local (r,p) polar coordinates used in the derivations. The charge

density of the beam as a sheet current flowing along the straight trajectory and the field
of the electron beam are as in (1.1) and (1.2).

If we consider that the beam velocity is constant, then the DR analysis is reduced
to the classical 2-D wave-scattering boundary-value problem, with (1.2) as the incident
field. It includes the Helmholtz equation with the corresponding wavenumbers in partial
domains, the graphene boundary conditions at the rod contours, the Sommerfeld
radiation condition at infinity, and the condition of the local power finiteness. This set
provides uniqueness of the DR problem solution. Then the basic equations are similar to
the “BPM-like” graphene covered dielectric nanowires, however, with different right-

hand part terms because of the different excitation,
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The scattering and absorption cross sections spectra in the infrared range for two

distances between the nanorods are pictured in Fig. 4.9.
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Fig. 4.9 The spectra of t TSCS and TACS for configuration in Fig 4.8. The wire radius
is 10 nm, the beam velocity B is 0.5, the impact parameter is 5 nm, the chemical
potential is 10 eV, the electron relaxation time is 1 ps, T = 300 K, the dielectric

permittivity is 2.4, and the distance L is 30 nm and 50 nm

They show a number of the natural-mode resonances. We remind that the dimer
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modes are conveniently called ‘supermodes’ as they are built on the modes of each
circular graphene-covered rod, coupled in one of the four possible ways in the sense of
symmetry or anti-symmetry. These quartets form two doublets of closely spaced
supermodes — see also Chapter 5.

The presence of supermode quartets is revealed in Fig 4.10a, where the
resonances decompose to four peaks, well visible on the zooms of ACS plots around the
frequencies of the dipole supermodes P;. In contrast, in Fig. 4.10b, where similar zooms
around the frequencies of the quadrupole supermodes P, are shown, a split of the
resonance peaks inside the doublets is not visible. This is caused by the smaller
frequency separation of the P, supermodes in each doublet. As one can see, the change
of the distance between the wires shifts the resonance frequencies. The larger the L, the
closer the frequencies of all peaks to the frequency of the plasmon mode of the single

circular wire covered with graphene.
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Fig. 4.10 Zooms of the spectra of TSCS and ACS in Fig 4.8 around the P; (a) and P,

(b) supermodes

In order to visualize the symmetry classes of the resonating supermodes, we

present the near magnetic field patterns and the far field angular patterns of the
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supermodes P,, see Fig. 4.11.

One can see different orientation of the field maxima (red spots) that corresponds
to different supermode symmetry classes. Each wire displays four bright spots of the
field maxima. Here, only two of the possible four symmetry orientations appear due to
unresolved resonances of the P, peaks.

Their Q-factors are not large enough to distinguish all symmetry classes. For the
panel (a), the resonance is on the x-even/y-even P, supermode at the frequency of
433.12 THz. For the panel (b), the resonance is on the x-odd/y-odd P, supermode at
447.72 THz. Note that in-resonance field magnitude maxima are around 25 times larger
than the magnetic-field maximum for the same beam in the free space. This
enhancement can be exploited in DLA design. However, the field high values decay

quickly off the rod boundaries as typical for the plasmon modes. The rate of decay is

close to exponential near the boundary, however, transforms to r? in the far zone.
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Fig. 4.11 Quadrupole supermode in-resonance near magnetic fields and far field
patterns of graphene-covered wire dimer. The wire and beam parameters are the same

as in Fig. 4.8, and the distance between the wires is 30 nm



129

4.3.2 DR effect for finite graphene-covered nanowire grating

The studied DR configuration is shown in Fig. 4.12. This is a finite-periodic array

made of M identical circular dielectric wires covered with graphene. It is excited by the

modulated electron beam field (1.2).

The DR problem formulation is similar to two-wire case studied in subsection

4.3.1. The final matrix equation has M x M block form and can be derived from the

general case of Chapter 2. It belongs to the Fredholm second kind type.
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Fig. 4.12 Cross-sectional geometry of a grating of M circular dielectric nanowires

coated with graphene and excited by a modulated electron beam

The IR-range spectra of TSCS associated with DR of the modulated electron

beam with £ = 0.5 and impact parameter h = 5 nm exciting the gratings made of 10, 50

and 100 graphene-covered nanowires are shown in Fig. 4.13. All the graphene and array

parameters are indicated above the figure.
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Fig. 4.13 The spectra of DR TSCS for the grating of M graphene-covered nanowire

gratings excited by the modulated electron beam

Note that in this numerical example the grating period is L = 2 um while the
radius of wires is a = 10 nm, and the wavelength varies from 1.03 to 0.94 um so that
a<L,A. From the comparison of the curves, computed with the block truncations
numbers Ni = 1 and 5 (not shown), it follows that 3 correct digits in TSCS of the 200-
wavelength scatterer are obtained with account of only three multipoles, m = 0 and +1.

The spectra demonstrate two natural-mode resonances. The most impressive
resonance peak of TSCS is seen at 313.4 THz and easily identified as associated to the
transversal “dipole-type” (of the azimuthal index m =1) plasmon mode of the circular
graphene cover of each individual nanowire. Indeed, the plasmon-mode P; frequencies
are given by (4.14), that yields 315 THz. In the considered case of nanowire grating,
where we have M optically coupled wires, the plasmon supermodes form 2M-multiplets.

However, as a<L,A, the separation between the supermodes, in frequency, is

extremely small. This is the reason that only one such peak is visible in Fig. 4.13. Note
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that the magnitude of this peak, if normalized by M, does not depend on the number of

wires (all the curves overlap completely).
The other resonance peak is found at 300 THz and shows opposite dynamics —
both its magnitude and sharpness strongly depend on M. The nature of this resonance is

revealed after plotting the far-field angular DR pattern — see Fig. 4.14(a).
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Fig. 4.14 The far-field patterns of DR for the gratings of M graphene-covered
nanowires excited by the modulated electron beam at the resonance frequencies of
300 THz (a) and 313.4 THz (b)

They demonstrate two narrow lobes in the grazing directions, 0 and 180° and
three even narrower lobes of DR in each half-space. These DR lobes are easily
identified as corresponding to the directions of the radiation of the Floquet field
harmonics of the corresponding infinite grating of the same period. Indeed, those

directions are given by the equations [2-4],

cosa, =nA/L+1/ B, n=0,£1,12,... (4.24)
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that yields « ,=1", ¢ , =61°, & , =90°, & , =118°. As could be expected, all lobes get

sharper with larger M. Additionally, cosa ,=1.031>1 that means that in the infinite

grating -6-th harmonic is just below cut-off. Indeed, if M gets larger, then this lobe gets
narrower and disappears. Now, note that the -2-nd harmonic is just above the cut-off.
This means that the frequency of the M-dependent resonance is very close to the
Rayleigh Anomalies (RA) of the -2-nd and -6-th order. Recalling that according to [131,
136, 137] there exist a lattice-mode pole just below each RA frequency, we can
conclude that the first resonance in Fig. 4.13 is associated with the lattice mode. On
finite gratings, these resonances also exist and their Q-factors raise if the number M gets
larger — see, e.g. [136, 137]. The DR patterns in Fig. 4.14(b) correspond to the plasmon
mode resonance, the frequency of which is far from any RA frequency.

Then we investigate the influence of the wire radius by choosing a =10, 50 ,100
nm for the M =100 grating. Figs. 4.15 and 4.16 present the per-wire TSCS in the broad
frequency range where we can identify plasmon modes denoted as P, and lattice

modes denoted as L, (close to the RA frequencies).

M =100, #=0.5, y,=10eV, = 2.4, L =2 pm, N=1, h= 5nm
100 -
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50 l 1(|)0 I 150 l 2(|)0 l 2|50 l 360 ' 3.%0
Frequency, THz
Fig. 4.15 The spectra of DR TSCS for the grating of M=100 graphene-covered

dielectric nanowire gratings excited by the modulated electron beam for three radii

a=10 nm, 50 nm and 100 nm and the chemical potential = 10 eV
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Fig. 4.16 The same as Fig. 4.15 for the chemical potential ;. =0.5 eV
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Fig. 4.17 The near magnetic field patterns in the P; plasmon-mode resonances marked

in for Fig. 4.15, near the first, the central-left and the last wires
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In Fig. 4.17, we present the near magnetic field patterns for the grating of Fig.

4.12. in the resonance on the P; mode, near the first, the central-left and the last
nanowire. The P; pattern is better visible in the case of the smallest wire radius,

because here the Q-factor of P; is the largest.

Conclusions to Chapter 4

- We have analyzed, using a dedicated numerical code based on the reduction of
the DR problem to the matrix equation having guaranteed convergence, the 2-D model
of BPM designed of twin graphene-coated circular dielectric nanowires. This analysis
has demonstrated that such a dimer can serve as an infrared-range sensor of the beam
shift from the prescribed trajectory. If such a shift appears, then new resonances on the
formerly “dark” supermodes start shining in the spectral dependence of the diffraction
radiation. To have these new peaks well resolved, the graphene chemical potential
should be rather high, around or above 0.5 eV. Such high values that can be achieved
with appropriate DC biasing.

- Besides, we have presented basic equations and sample numerical results for the
DR from two in-line dielectric circular nanowires with graphene covers exited by the
modulated electron beam. The resonances on the plasmon supermodes of different
symmetries have been discussed. This analysis can be useful in the design of DLA
sections made of low-index dielectrics, however, covered with graphene.

- Moreover, we have demonstrated two types of resonance effects in the DR of a
modulated electron beam flowing over a sparse finite grating of M >>1 circular
dielectric nanowires with graphene covers. Namely, the resonances on the plasmon
modes of each wire and on the lattice modes of the whole grating have been discussed.
This investigation can be helpful in the design of DLA sections based on dielectric

elements covered with graphene.
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CHAPTER 5 THRESHOLD CONDITIONS FOR SINGLE AND TWIN

GRAPHENE-COVERED QUANTUM NANOWIRE LASERS

This chapter is dedicated to the implementation of the Lasing Eigenvalue Problem
(LEP) approach for study of the electromagnetic field in the presence of a circular
quantum wire (QW) made of a gain material and wrapped in graphene cover and a
dimer of two identical graphene-covered QWs, at the threshold of stationary emission.
As explained in section 1.6, LEP delivers the mode-specific eigenvalue pairs, namely
the frequencies and the threshold values of the QW gain index for the plasmon and the
wire modes of such nanolasers. In our analysis, we use quantum Kubo formalism for the
graphene conductivity and classical Maxwell boundary-value problem for the field
functions. The materials of Chapter 5 have been published in works [Al, A10, Al2,
Al4].

The goal of this chapter to study the plasmon and non-plasmon mode threshold
conditions of the nanolasers made of a circular QW covered with graphene and a pair of
such QWs (see Fig. 5.1).
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Fig. 5.1 Cross-sectional geometry of a single (a) and a dimer (b) of identical gain-

material circular nanowires with graphene covers and the notations used
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Besides, we plan to investigate their dependences on the QW and graphene

parameters. Our instrument is the LEP approach [149] (see also section 1.6), which has
been already applied to several types of microlasers in [111, 150, 151] and silver
nanostrip and nanotube plasmonic lasers in [152,153]. LEP is a full-wave semi-classical
electromagnetics eigenvalue problem, tailored to extract the mode-specific wavelengths,
together with the associated threshold material gain values, of not attenuating in time
emission. Complete mathematical grounding of LEP can be found in [154].

Note that the laser configuration in Fig. 5.1 (a) was considered recently in [155]
using essentially a LEP-like approach, namely, looking for the conditions that turn the

imaginary part of the natural frequency of the plasmon mode P, to zero.
5.1 Modes of single graphene-coated quantum nanowire laser
5.1.1 Lasing Eigenvalue Problem statement

Consider a single-wire laser, the active region of which is a graphene-covered
circular QW, as shown in Fig. 5.1a, in the free space. We denote the radius of QW as a
and assign the indices 1 and 2 to the inner (r < a) and outer (r > a) domains of QW,
respectively.

We assume that the wire is infinite along the z-axis and that the electromagnetic
field does not depend on z, with time dependence €', where the frequency is real,
@ =Rew. Thanks to this, we consider a 2-D problem in the plane of the wire cross

section, where we introduce the polar coordinates, (r,¢). As graphene is known to
support the H-polarized plasmon modes, we consider only this case. Here, the electric
and magnetic fields have components E =(E,,E,,0) and H=(0,0,H,), respectively.
Our goal is to study the conditions, under which non-zero time-harmonic EM field can
exist in such configuration, in the absence of the incident field.

The function H,(r,p) must satisfy the Helmholtz equation, (A+ kfz)Hz(r,go):O
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outside the QW boundary (r=a), with the wavenumbers k, =kvand k, =k, where

k=w/c and the QW material as nonmagnetic, so that its dielectric constant is connected
to the refractive index v as e=v. At the graphene-covered QW boundary, the field

function must satisfy the same “resistive” boundary conditions as in

section 4.1,
E) =B EJ+EN=2ZZ,(H" —H), r=a, (6.1)

where Z is the surface impedance of graphene, normalized by the free-space impedance

Zo, it has the following form: z =(cz,)™, with ¢ being the complex surface

conductivity. Besides, thanks to real k, the field function must satisfy the Sommerfeld

radiation condition at infinity, and, additionally, the condition of the local field power

finiteness. Note also that E}"“* :(Z0 / ikglyz)aH et/ or, from the Maxwell equations.

We consider the complex refractive index of the QW gain material to be
v=a—iy, where « is known refractive index and >0 is unknown threshold gain
index. For simplicity, we will also assume that the material gain is uniformly distributed
throughout the QW and does not depend on the frequency. In real life, such a QW can
be a glass-like material doped with erbium ions, to provide the gain in the infrared
range. In the sub-THz range, similar properties are known for the andalusite crystalline
material doped with iron.

Mathematically, within the LEP we look for such pairs of real numbers (k)
that generate non-zero functions {E.,H.} (s = 1,2, ...), which solve the formulated

above boundary-value problem for the Maxwell equations. That is, we look for the
frequencies and gain-index thresholds of laser modes as eigenvalue pairs. It is worth to
note that the other LEP-like formulations exist, see [113-117], where the threshold gain

is characterized with Img <0 instead of 7 or with the product, g=Kky. The graphene’s

conductivity has been discussed in section 1.4 and will be used in the further analysi.
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5.1.2 Characteristic equations for the single-wire modes

The magnetic field inside and outside the wire can be expanded as Fourier series
in the angular exponents, taking into account the radiation condition at infinity and

condition of local field power finiteness near the center of wire,

H‘”t’e“(r 0)= i X, J.(vkr), r<a
. d ymHm(kr)’ r>a

m=0(1)

}cos(m(p) or sin(me), (5.2)

where X, and yn are unknown coefficients, while J_(.) and H_(.) are the Bessel and the

Hankel 1-st kind cylindrical functions, respectively. The orthogonality and

completeness of the set of functions cos/ sin(mg), m=(0),1,2,... on the circle allow us

to apply the conditions (5.1) in term-by-term manner.

Thus, the separation of variables leads to splitting of the modes into independent
orthogonal families by the azimuthal index m, and all modes with m > 0 are double
degenerate.

After some algebra, independent full-wave transcendental equations for the

modes of each index, m = 0,1,2..., can be written as

Dy (k,78,0,2) =3, (kva)Hy (ka) +iZ| 37, (kva)H,, (ka) - vd,, (kva) Hy, (ka) | =0,
(53)

Note that if Z=0 or |Z]—>x, then, respectively, (5.3) turns to the characteristic
equation for the modes of the circular cavity with PEC wall or the circular dielectric rod
in the free space.

We emphasize that the complex calculus theorems guarantee that the roots of

(5.3) are discrete on the plane (k,7). Besides, each of them is a continuous function of a,

a and Z and cannot appear or disappear on that plane except at k = 0 and infinity.
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It is interesting that those roots of (5.3) that correspond to the plasmon modes can

be determined analytically, at least in the frequency domain where the intraband

conductivity, o, dominates over the interband conductivity, o, .. (see section 1.4).

inter

In this domain, & can be neglected, and the normalized surface impedance (or

inter

resistivity) of graphene takes the form,
Z(0) %(ZyOps ) = (1 7 i) 2, (5.4)

where €2 is given by equation (4.13).

Now, we can consider the circular graphene shell as a traveling wave resonator,
which supports the transversal plasmon modes (similarly to silver nanotube plasmon
modes [95]). Then, neglecting the curvature of the shell, and hence the radiation losses,

approximate characteristic equation for these modes is

gplasa:m’ m:l,2,... (55)

where ¢ is the propagation constant (eigen-wavenumber) of the plasmon guided

plas
wave on the infinite flat graphene monolayer placed between two dielectrics, known in

the analytical form from [156]. Namely, if | Z [>>1,then
Oy = ik(e+1DZ +0O(Q) (5.6)
On substituting (5.6) and (5.4) into (5.5), a complex-valued equation is obtained,
ika(e +DZ(k,»)+O@Q) =m, m=12,... (5.7)

which can be solved analytically in the same approximation. Interestingly, equation
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(5.7) also follows from (5.3) if ka<<1 and |kval|<<l [159]. The real part of this

equation allows to find approximate expression for the emission frequencies of the

transversal plasmon modes of the closed graphene shell, which covers circular QW,

1/2
- [ mo
n {a(az +1)c} (5:8)

Note that this value is the same as the real part of the complex eigenfrequency in
the analysis of natural modes of the passive graphene-covered circular dielectric wire
(section 4.1).

One can see that in the considered approximation, the emission frequencies do not
depend of the electron relaxation time and are proportional to the square-roots of the

chemical potential of graphene (if z, >>k,T ) and inverse QW radius. This opens up the

possibility of developing a laser that is continuously tuned in a fairly wide range of
frequencies.
Furthermore, the imaginary part of the same equation delivers the threshold

values of the gain index,

b (“2”)3/2( a jﬂzl 5.9
m 20 mQc) r (59)

Thus, the lasing thresholds of the plasmon modes are inversely proportional to the
electron relaxation time and the square roots of the mode azimuth index and the

chemical potential (if z, >>k,T ). Besides, they scale down as the square root of the

wire radius, although one should keep in mind that (5.8) is derived neglecting the
radiation losses of the plasmons.
Interestingly, frequently used in the laser physics quantity of the product of (5.8)

and (5.9), which is the gain per wavelength, does not depend, in the considered
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approximation, on the QW radius, graphene chemical potential and mode index,

2
p p_a +1
km°7m~

or k°-(Img)f = Res+1

(5.10)
20CT Cr

Therefore, within this approximation, all plasmon modes under any variations of

the mentioned parameters stay at the same hyperbolic trajectory, k =C(a,7)- ™, which

is controlled only by the electron relaxation time, z, and wire refractive index, a. This
feature is, obviously, the consequence of the fact that the simplified Kubo expression
for graphene’s surface impedance (5.4) suggests that both its real and imaginary parts

are proportional to Q(_,T), hence their ratio scales as wr.

5.1.3 Full-wave analysis of single-wire laser mode properties

In this subsection, we present the results of numerical study of the LEP eigenpairs
for the single-QW graphene-coated laser using the full-wave equations (5.3) and full
Kubo conductivity (1.3) - (1.5). In Fig. 5.2, the lasing frequencies and thresholds are
shown versus the wire radius, which varies from 50 nm to 100 um, at uc. = 0.25 eV, 7 =
0.5 ps and a = 1.55. One can see that the plasmon modes have lower frequencies and
thresholds than the first QW modes Ho, and Hi; provided that the QW radius is smaller
than 10 wm, while in thicker wires they become comparable.

The based on the Drude term approximations (5.7) and (5.8) for k" and ,° are
also shown by the dotted curves in Fig. 1.3. Note that they are in very good agreement
with full-wave computations of the roots of (5.3), performed by the iterative root-search
method, where (5.7) and (5.8) are the initial-guess values. As expected, the agreement
worsens at low frequencies where | Z | gets so small that the radiation losses become
comparable to the ohmic losses and at very high frequencies where the contribution of

the interband conductivity cannot be neglected.
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Fig. 5.2 Frequencies and thresholds versus the wire radius a for the plasmon modes
Pi1, P2, P3 and Py and the perturbed dielectric wire modes Ho, and Hj; for the single-

wire laser with parameters of graphene uc = 0.25eV, 7=0.5ps and o = 1.55

Further, to make clearer the comparison of the lasing conditions, we plot the
trajectories of the modes, considered in Fig. 5.2, on the plane (f, y), where f = kc/2y,
under the variation of the chemical potential of graphene (Fig. 5.3), electron relaxation
time (Fig. 5.4), and QW refractive index (Fig. 5.5).
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Fig. 5.3 Trajectories of the plasmon modes P, and perturbed dielectric wire modes Hym
of the single-wire laser with parameters @ = 50 um (a), 10 um (b) and 1 um (c¢), under

the variation of the chemical potential of graphene. Other parameters are as marked

Here, we choose the wire radius to be 50 um, 10 um and 1 pum and assume that
the QW gain material refractive index and the graphene parameters are as indicated in
figures. We emphasize that these trajectories have been computed from the full-wave
transcendental equations (5.3) and full Kubo expressions (1.3)-(1.5) for several values

of the azimuth index m. For comparison, the trajectories based on approximations (5.8)
and (5.9) are also presented as dashed lines.
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Fig. 5.4 Trajectories of the plasmon modes P, and wire modes H,n of the single-wire

laser with parameters a = 50 um (a), 10 um (b) and 1 um (c), under the variation of the
electron relaxation time. Other parameters are as marked

As one can see, only the plasmon-mode frequencies are well tunable using the
graphene chemical potential. Making the wire thinner than 10 um shifts QW modes far to
the blue side of spectrum. The larger the z, the lower the thresholds of all modes; note
that if ¢ varies from realistic 1 ps to fantastic 10 us (marked by arrow), then the P;
threshold is almost stable that points out to the possible radiation loss level. Again, the
approximations of (5.8) and (5.9), given by the dashed curves, are amazingly accurate
except of the low-terahertz and higher than 35 THz frequencies.
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Fig. 5.5 Trajectories of plasmon modes P, and wire modes Hnn of the single-wire laser

with radii @ = 50 um (a), 10 um (b) and 1 pm (c), under the variation of the refractive
index of QW. Other parameters are as marked

5.2 Supermodes of twin graphene-coated quantum nanowire laser

In this section, we present the results of full-wave numerical analysis of the lasing
frequencies and thresholds of the dimer laser supermodes.

In the case of dimer as it is shown in Fig. 5.1 (b), we introduce the global

Cartesian and polar coordinates, with the origins at the midpoint between QW axes so
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that r=(x,y)=(r,p), where Xx=rcosg, y=rsing, and two local CS with the origins
at the wire axes. Then, the associated LEP formulation is similar to single-wire case,

with the conditions (5.1) imposed at each wire’s boundary, r; =a (j = 1,2). Important

circumstance is that the dimer-wire configuration has two lines of symmetry, that is the

x and y axes.

5.2.1 Full-wave determinantal equations of four symmetry classes of dimer

supermodes

As if has been discussed in Chapter 4, in the dimer case all eigenmodes are in fact
"supermodes,” built on the modes of each individual circular wire and optically
connected in four possible ways dictated by the two-fold symmetry. Hence, supermodes
make quartets instead of pairs because each mode of a stand-alone circular wire is
doubly degenerate; this degeneracy is lifted when another circular wire appears. Only
the supermodes built of axially symmetric modes of each wire make doublets. Each
family of supermodes has either the symmetry or the anti-symmetry of its field with
respect to each line of symmetry; they can be conveniently denoted as “x-even, y-even”
(EE), “x-even, y-odd” (EO), “x-odd, y-odd” (OO), and “x-odd, y-even” (OE). The

“even/odd” conditions, respectively, can be expressed as

H, =0aty=0or H, =0atx=0;H,=0aty=00rx=0 (5.11)
OX oy

To reduce the dimer LEP to determinantal characteristic equations, we follow the
same approach as in section 4.3 and use the Fourier expansions of the field function in
the local polar coordinates, the addition theorems for the cylindrical functions, and the

conditions (5.11). Here, we look for the magnetic field function as
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H, =

z

H™D - roe(Lj), j=12,
{ : e(L) ] 512

H, 1. e(2),

z ! J

It is convenient to introduce new variables v, = ¢, + 7/ 2. Then the internal and

external fields, which have the y-even and y-odd symmetry can be expanded as follows:

HO (rp) = Y03, (kar)S: (w,), =12 (5.13)
n=0
He(rp) = 3 S 20H, (kr)SE (), (5.14)
j=1,2 n=0

where we use the following notations: S*(w)=cosmy and S_(y)=sinmy, J (-) and
H_() are the Bessel and Hankel (first kind) functions, and y&# and z&* are unknown

coefficients to be found. This representation of the function H satisfies the Helmholtz
equation, the Sommerfeld radiation condition, the local power finiteness condition, and
the y-even/y-odd symmetry conditions that is (5.11) at x=0.

On substituting (5.13) and (5.14) into the graphene boundary conditions (5.1),
using the Graph addition theorem for the Hankel functions, and introducing the

notations,

_ o E/O,E(0) _ | AE/O,E(0)”
= {5mn}m,n=0(1) A _{ n }m,n=0(1) ’ (5.15)
E/0,E(0) _ [ (@2)\™
Xl,Z - {Xn }n=0(1) ’ (516)
x2) = 720wt w =nl(2/ka)" (5.17)

where ¢, is the Kroenecker symbol, we exclude the unknowns X{" because from

(5.11) it follows that
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XlE/O,E :iXZE/O,E1 XlE/O’O :$X2E/o,o (5.18)

and obtain the following four matrix equations for X/P®:

x-even/y-even (EE) and x-odd/y-even (OE) mode classes,

(1+A%PF)XOF =0, (5.19)

O = VWD H, L (D™ + H (kD)™ | (5.20)

n"m-'m

and x-even/y-odd (EO) and x-odd/y-odd (OO) mode classes,

(1+A%90) X0 =0, (5.21)

200 = 2V W'D H, (KL)I™" = (D)™ H,,,,, (KL)I™" | (5.22)

where D_ is given by (5.2), 4, =1/2, u_,=1 and
V, =3 (ka)Jd (kva)—iZ[vd; (ka)J,, (kva) - J,, (ka)Jd; (kva)], (5.23)

The large-index asymptotics of the cylindrical functions allow to establish that
each of equations (5.19) and (5.21) is a Fredholm second kind matrix equation in the

space of sequences I, ®1,. Thanks to this, their infinite-dimension determinants exist as

functions of all parameters of the problem. Besides, thanks to the Fredholm theorems
generalized for the operators [157], the characteristic numbers of (5.19) and (5.21) are

discrete on the plane (k,») and depend continuously on the geometrical and material

parameters of the problem. Moreover, this guarantees that the approximate

characteristic numbers, found from the truncated determinantal equations,
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Det{s,, — A% (k,»)} " =0, p,g=EO, (5.24)

m,n=0(1)

converge to the exact values for progressively larger truncation numbers Ny [158].

To illustrate the splitting of the dimer plasmon modes into quartets, we present in
Fig. 5.6 the near magnetic field patterns of four supermodes P; of the EE, OE, EO and
OO symmetry classes. Note that the symmetry (anti-symmetry) of the H-field entails

anti-symmetry (symmetry) of the E-field pattern.

EE mode, a=1 pm, s=1 um, 1=0.5 ps, OE mode, a=1 um, s=1 um, 1=0.5 ps, a=1.55, 1 .=0.2 eV
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Fig. 5.6 The near magnetic field patterns of four supermodes P; of the EE (a), OE (b),
EO (c), and OO (d) symmetry classes. The threshold values of the frequency of

emission and the gain index are given below each picture
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Note that the matrix elements in (5.24) need no numerical integrations, and hence
can be easily computed with machine precision.
It should be emphasized that the scaling of the unknowns with the aid of the

weight w_ (5.17) is crucially important. Without this scaling, the matrix elements

would decay with n—oo however grow up exponentially with m—oo that prohibits,

mathematically, the truncation of the matrix.

5.2.2 Dimer-wire laser mode properties

In Fig. 5.7, we show the trajectories of the dimer plasmon supermode quartets on
the plane (f, y), under the variation of the chemical potential of graphene. Here, two
supermode quartets are present, built on the plasmon modes P; and P, in each wire, for
two values of the inter-wire separation, 100 nm for panel (a) and 1 pm for panel (b).
Although being split here, supermode trajectories, in general, are still close to the

hyperbola defined by equation (5.9). Only the “dipole” supermodes P™® display

deviations, which become smaller if the separation gets larger.
Finally, in Fig. 5.8 we present the mode trajectories of three supermode quartets,

|31,(2p,'3q), under the variation of the inter-wire separation distance from 10 nm to 1 pum, for

two values of the chemical potential, 0.2 eV for panel (a) and 0.5 eV for panel (b).

As expected, if the wires move away from each other, then all four modes of a
quartet migrate to the same ‘“destination point,” which is the single-wire mode
frequency and threshold (marked with stars).

The largest splits and the slowest pace of reaching the limit are again associated

with the “dipole” supermodes, P{*¥. This can be explained by the fact that the

compression of the plasmon-mode fields to the graphene shell increases with the mode
index, m, therefore the distance needed for efficient coupling gets smaller. Note that, in

all examples, the supermodes built on the wire modes, Ho; and Hi;, are off the studied
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range of frequencies, from the blue side. Note that one or two supermodes of a quartet

can have lower thresholds than the similar plasmon mode of the single nanowire.
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Fig. 5.7 Trajectories of the plasmon supermodes P, of the dimer-wire laser with

parameters @ = 1 um and separation distances S = 100 nm (a) and 1 pm (b), under the

variation of the chemical potential of graphene. Other parameters are as marked
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Conclusions to Chapter 5

- We have presented the computational electromagnetic analysis of the threshold
conditions for the modes of the plasmonic graphene nanolasers based on the circular
QW wrapped in graphene and a dimer of such wires. Using the Kubo formalism and
separation of variables, adapted to the LEP approach, we have derived full-wave
transcendental and determinantal equations for the transversal mode emission
frequencies and the material gain thresholds in the single wire and dimer cases,
respectively. These equations are easily coded in straightforward manner and computed
with machine precision, making the use of commercial codes unnecessary.

- Besides, for a single-wire laser we have derived approximate analytical
expressions for the plasmon-mode frequencies and thresholds, neglecting the radiation
losses and only using the Drude term (i.e. the intraband component) in the description of
graphene’s surface conductivity. These expressions are in excellent agreement with full-
wave computations in very wide range of the wire radii and frequencies. As new result,
we have found that the product of any plasmon-mode frequency and threshold is close
to a constant, defined by the QW refractive index and electron relaxation time, only.

- If the QW radius is smaller than 10 um, then the plasmon modes or supermodes
have lower frequencies and thresholds than the ‘parasitic” QW modes, however, in
thicker wires they can be comparable. As expected, only the plasmon-mode
characteristics can be well controlled with the aid of the graphene chemical potential. In
the dimer, the plasmon supermodes form tight quartets, approaching the single-wire
mode characteristics if the inter-wire separation becomes comparable to the radius.
Whatever the separation, the EE supermode, featuring the x-even and y-even H-field,
shows the threshold, lower than of the same mode in a single graphene-covered QW.
This can be explained by the fact that this supermode has zero E field at the x and y
axes. We believe that these results bring a clearer vision of how to build single-mode

graphene-covered plasmonic nanolasers and their arrays.
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CONCLUSIONS

In the dissertation, a mathematically grounded numerical algorithm with
guaranteed convergence has been developed for the study of the DR effect for various
configurations of circular nanowires and nanotubes made of dielectric, silver, and
graphene excited by the modulated beam of charged particles. The considered DR
problems have been either solved analytically - for single wires, or reduced to the a
Fredholm second-kind matrix equation of the block type, which can be solved
numerically with controlled accuracy up to machine precision — for multiple wires. This
has allowed us to investigate the spectral characteristics of the DR-caused EM field
scattering and absorption by finite configurations of circular nanowires and nanotubes,
excited by the modulated beams of charged particles, as well as the eigenmodes of such
nanowire configurations.

The main conclusions of the work can be formulated as follows:

o If the particle beam trajectory is shifted from the central (symmetric)
position between the twin nanowires, then the DR scattering and absorption spectra
display appearance of previously absent resonances, associated with the dimer
supermodes whose fields are orthogonal, in symmetry, to the beam field; the intensities
of new peaks are proportional of the beam displacement or its angular shift;

. the above-mentioned effect has been found for the high-Q supermodes of
the dimers of high refractive-index dielectric wires, thin noble-metal nanotubes, and
graphene-covered wires at the high enough values of graphene’s chemical potential;

o to observe the mentioned effect, the frequencies of the modes of different
azimuthal orders in single circular resonator, used in the dimer, have to be well
separated from each other; therefore, it is not observed for the plasmon modes of the
dimers of solid circular noble-metal nanowires;

o in the analysis of DR from sparse finite periodic arrays of many graphene-
covered nanowires, the dominant feature in the frequency spectra of DR power are the

resonances on the plasmon modes of each wire and the lattice modes of the whole array;
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the latter resonance peak intensities strongly depend on the number of wires;

o the Optical Theorem (OT), known previously in the plane-wave scattering,
has been adapted to the DR effect: that entails introduction of the complex-valued
angles of incidence; the derived expression can be used for partial validation of
numerical codes; in the thesis, OT has been satisfied with machine precision;

o in the analysis of the lasing threshold conditions of the modes of single
circular graphene-covered active wire, we have found that if the wire radius is smaller
than 10 um, then the “working” plasmon modes are much lower, both in the frequencies
and in the threshold values of the gain in active region, than the “parasitic” dielectric
wire modes; otherwise, they become comparable;

o if the separation between the wires in graphene-covered active circular
nanowire dimer becomes larger than their radius, then all four plasmon supermodes of
the lowest types form very tight quartets both in frequencies and in thresholds;

o the obtained results of numerical analysis of the DR-caused scattering and
absorption characteristics, far and near field patterns of the wave emission from charged
particle beam moving near various nanowire scatterers and gratings of them have
fundamental significance and wide range of applications. The latter includes BPM and
DLA designs. The analysis of thresholds conditions for the plasmon modes of the
considered in the thesis nanolasers can help in the creation of new, more efficient
nanolasers;

. the developed computational codes of the DR-caused scattering and
absorption characteristics permit using them as a core of the software for numerical

optimization of optical configurations, key elements of which are circular nanowires.
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