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ABSTRACT 

 

Herasymova D.O. Diffraction radiation from dielectric, silver and graphene 

circular nanowire configurations excited by modulated electron beam. - Qualifying 

research work in the form of manuscript. 

 

This thesis is submitted in fulfillment of requirements for obtaining the degree of 

Doctor of Philosophy in specialization #104 – Physics and Astronomy (10 - Natural 

Sciences). - O. Y. Usikov Institute for RadioPhysics and Electronics NAS of Ukraine, 

Kharkiv, 2023.  

The thesis is devoted to the theoretical analysis of diffraction radiation (DR) from 

a time-harmonically modulated beam of charged particles passing near to single and 

multiple circular, in cross-section, nanowires, made of dielectrics, noble metals, and 

graphene-covered dielectric wires. We consider several promising configurations of 

such scatterers. Here, analysis of DR from single wires is important for understanding 

the physics of the associated phenomena. This analysis is relatively simple as it needs 

only the separation of variables and leads to explicit solutions. However, it has not been 

performed so far and hence had to be done. Further, we consider DR from the dimers of 

dielectric, metal and graphene-covered circular nanowires, i.e. the pairs of twin 

(identical) nanowires, which we view as beam position monitors. Finally, we consider 

the DR in the presence of finite-periodic gratings of such nanowires, as a model of the 

orotron vacuum tube or the dielectric laser accelerator. As usual in the analysis of the 

DR, we assume that the beam velocity is fixed and obtain, in each case, a classical time-

harmonic scattering problem for the known incident wave, which is the modulated-

beam field in the free space. This is a full-wave two-dimensional (2-D) boundary-value 

problem for the Helmholtz differential equation in partial derivatives, with exact 

boundary conditions, plus the condition of local power finiteness and the radiation 

condition at infinity. In the case of noble-metal wires, we use the well-established 

experimental data for the frequently – dependent dielectric permittivity of silver in the 



3  

visible and infrared ranges. In the case of graphene-covered wires, we use the Kubo 

formalism for the electron conductivity of graphene and the resistive-sheet boundary 

conditions on the wire contours. To cast each of the considered problems to a well-

conditioned algebraic (i.e. matrix) equation, we use the separation of variables in local 

coordinates and the addition theorems for cylindrical functions. This allows us to invert 

analytically the single-wire part of the whole DR problem and to bring it to a Fredholm 

second-kind matrix equation of the block type. The latter equation can be solved 

numerically with controlled accuracy up to machine precision. Using such a trusted 

numerical instrument, we perform systematic computations of the radiation power, the 

absorption power, as function of the frequency. These quantities display the resonance 

behavior caused by the excitation of the natural modes of the considered wires and their 

arrays as open resonators. The modes are identified by visualizing the near and far field 

patterns. To obtain better understanding of the natural modes, we perform the analysis 

of associated eigenvalue problems. Additionally, we consider the lasing eigenvalue 

problem for the graphene-covered wire dimer where we assume that the inner material 

is active, i.e. has gain, and determine the threshold conditions for the natural modes of 

such a plasmonic nanolaser. 

The goal of the work is to analyze the resonance effects in DR from the 

mentioned above nanowire configurations excited by the harmonically modulated 

beams of charged particles. In terms of applications, we study the dimer structures that 

are most sensitive to variations in the beam trajectory and velocity and hence can be 

exploited as beam monitors. Finite arrays of nanowires are analyzed as key components 

of vacuum tubes and dielectric laser accelerators. In all cases, the resonance effects in 

DR due to excitation of various natural modes play crucial role. Therefore, we focus our 

analysis at a detailed study of how the resonances on the modes of dielectric wires, 

plasmon modes of metal and graphene tubes, and lattice modes of periodic arrays 

manifest themselves in the total scattering and absorption cross-sections and the far and 

near field patterns.  

To achieve these goals, the following tasks are solved: 
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- building adequate 2-D mathematical models of the scattering and 

absorption of the harmonically modulated beam field by arbitrary ensemble of circular 

nanowires or nanotubes, 

- developing corresponding numerical algorithms for computation of the 

scattering and absorption characteristics, as well as the fields in the near and far zones 

of the studied structures, 

- mastering the use of the commercial numerical codes, necessary to 

confirm the theoretical results. 

- establishing a general relationship between the DR scattering and 

absorption characteristics that is the Optical Theorem, adapted to the DR of the 

modulated electron beam, 

- investigating how the resonances on the natural modes of dielectric wires, 

plasmon modes of metal and graphene boundaries, and lattice modes of finite arrays 

influence DR of a modulated electron beam, 

- exploring the potentialities of beam position monitors, built on dimers of 

resonance nanowires of different nature: high refractive-index dielectric wires, metal 

wires, metal nanotubes and graphene-covered dielectric wires, 

- investigating the natural modes of the dimer nanowire configurations 

viewed as open resonators and determining the lasing threshold conditions for these 

modes in the case of the presence of active regions. 

The following new scientific results (i.e. those not published earlier, to our best 

knowledge) have been obtained in the work: 

- if the particle beam trajectory is shifted from the central (symmetric) 

position between the twin nanowires, then the DR scattering and absorption spectra 

display appearance of previously absent resonances, associated with the dimer 

supermodes whose fields are orthogonal, in symmetry, to the beam field; the intensities 

of new peaks are proportional of the beam displacement or its angular shift, 

- the above-mentioned effect has been found for the high-Q supermodes of 

the dimers of high refractive-index dielectric wires, thin noble-metal nanotubes, and 
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graphene-covered wires at the high enough values of graphene’s chemical potential, 

- to observe the mentioned effect, the frequencies of the modes of different 

azimuthal orders in single circular resonator, used in the dimer, have to be well 

separated from each other; therefore, it is not observed for the plasmon modes of the 

dimers of solid circular noble-metal nanowires, 

- in the analysis of DR from sparse finite periodic arrays of many graphene-

covered nanowires, the dominant feature in the frequency spectra of DR powers are the 

resonances on the plasmon modes of each wire and the lattice modes of the whole 

array.; the latter resonance peak intensities strongly depend on the number of wires, 

- The Optical Theorem (OT), known previously in the plane-wave scattering, 

has been adapted to the DR effect; This entails introduction of the complex-valued 

angles of incidence; the derived expression can be used for partial validation of 

numerical codes (in the thesis, OT is satisfied with machine precision), 

- in the analysis of the lasing threshold conditions of the modes of single 

circular graphene-covered active wire, we have found that if the wire radius is larger 

than 10 μm, then the “parasitic” dielectric wire modes become competitive with the 

“working” plasmon modes both in the frequencies and in the threshold values of the 

gain in active region, 

- if the separation between the wires in graphene-covered active circular 

nanowire dimer becomes larger than their radius, then all four plasmon supermodes of 

the lowest types come together in close quartets both in frequencies and thresholds; one 

of the supermodes can have a lower threshold than the similar mode of the stand-alone 

nanowire.  

 

Keywords: nanowire, dielectric, graphene, nanolaser, electron beam, beam 

position monitor, resonance, plasmon mode, grating mode, grating mode, self-excitation 

threshold, active zone. 
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АНОТАЦІЯ 

 

Герасимова Д. О. Дифракційне випромінення на структурах з круглих 

діелектричних, металевих і графенових нанониток, що збуджуються 

модульованим потоком електронів. – Кваліфікаційна наукова праця на правах 

рукопису. 

 

Дисертація на здобуття наукового ступеня доктора філософії за 

спеціальністю 104 – Фізика та астрономія (10 – Природничі науки). - Інститут 

радіофізики та електроніки ім. О.Я. Усикова НАН України, Харків, 2023. 

 

Дисертацію присвячено теоретичному аналізу дифракційного випромінення 

(ДВ) гармонічно модульованого в часі пучка заряджених частинок, що пролітає 

поблизу одиничних круглих у поперечному перерізі нанониток, виготовлених з 

діелектриків, благородних металів і вкритих графеном, а також структур з їхнього 

скінченного числа. Розглядаються кілька перспективних конфігурацій таких 

розсіювачів. Аналіз ДВ від окремих ниток важливий для розуміння фізики 

пов’язаних явищ. Цей аналіз відносно простий, оскільки потребує лише 

застосування методу розділення змінних і веде до явних рішень. Однак такий 

аналіз ще ніким не був виконаний, тому є необхідність це зробити. Далі 

розглянуто ДВ від даймерів з діелектрика, металу та вкритих графеном, тобто від 

пар однакових нанониток, які ми розглядаємо як моделі моніторів положення 

пучка. Нарешті, ми розглядаємо ДВ у присутності скінченно-періодичної решітки 

таких нанониток, яка може розглядатися як модель електронно-вакуумного 

джерела типу оротрона або діелектричного лазерного прискорювача. Як зазвичай 

при аналізі ДВ, ми вважаємо, що швидкість пучка є фіксованою, і в кожному 

випадку отримуємо класичну задачу гармонійного у часі розсіяння для заданої 

падаючої хвилі, яка є полем модульованого пучка у вільному просторі. Це 

двовимірна (2-D) крайова задача у строгій постановці для диференціального 
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рівняння Гельмгольца в частинних похідних із відповідними крайовими умовами, 

а також умовою локальної скінченності потужності та умовою випромінення на 

нескінченності. У випадку ниток із благородних металів ми використовуємо 

широко відомі експериментальні дані для частотно-залежної діелектричної 

проникності срібла у видимому та інфрачервоному діапазонах. У випадку ниток, 

покритих графеном, ми використовуємо формалізм Кубо для електронної 

провідності графену та граничні умови резистивного типу на контурах нанониток. 

Щоб привести кожну з розглянутих задач до добре обумовленого алгебраїчного 

(тобто матричного) рівняння, ми використовуємо розділення змінних у локальних 

координатах і теореми додавання для циліндричних функцій. Це дозволяє нам 

аналітично обернути таку частину всієї задачі ДВ, яка відповідає одній нанонитці, 

і привести її до матричного рівняння другого роду Фредгольма блочного типу. 

Останнє рівняння можна розв’язати чисельно з контрольованою точністю, яку 

може бути доведено до машинної точності. Використовуючи такий надійний 

чисельний інструмент, ми виконуємо систематичні обчислення потужності 

випромінення та потужності поглинання, як функцій частоти. Ці величини 

демонструють резонансну поведінку, спричинену збудженням власних мод 

розглянутих ниток та їхніх масивів як відкритих резонаторів. Моди 

ідентифікуються шляхом візуалізації ближнього та дальнього поля. Щоб краще 

зрозуміти властивості власних мод, ми виконуємо аналіз відповідних задач на 

власні значення. Крім того, ми окремо розглядаємо лазерну задачу на власні 

значення для одиничної нитки та даймеру, покритих графеном, де ми 

припускаємо, що внутрішній матеріал є активним, тобто має підсилення, і 

визначаємо порогові умови для власних мод такого плазмонного нанолазера. 

Метою дисертаційної роботи є аналіз резонансних ефектів у ДВ у 

присутності конфігурацій з нанониток, що згадані вище, які збуджуються 

гармонічно модульованими пучками заряджених частинок. З точки зору 

застосувань, ми вивчаємо даймери з нанониток – це такі конфігурації, які є 

найбільш чутливими до змін траєкторії та швидкості пучка, і, отже, можуть 
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використовуватися як монітори положення пучка. Скінченні решітки з нанониток 

цікаві як ключові компоненти вакуумних джерел і діелектричних лазерних 

прискорювачів. У всіх випадках найбільш важливу роль відіграють резонансні 

ефекти в ДВ за рахунок збудження різних власних мод. Тому ми зосереджуємо 

наш аналіз на детальному вивченні того, як резонанси на модах діелектричних 

ниток, плазмонних модах металевих і графенових трубок, а також граткових 

модах періодичних решіток проявляються в повних перерізах розсіяння та 

поглинання, а також у далеких і ближніх полях. 

Для досягнення поставлених цілей вирішуються такі завдання: 

- побудова адекватних 2-D математичних моделей розсіяння та поглинання 

гармонічно модульованого поля пучка частинок довільним ансамблем кругових 

нанониток або нанотрубок;  

- розробка відповідних чисельних алгоритмів для розрахунку характеристик 

розсіяння та поглинання, а також полів у ближній та дальній зонах;  

- навчання застосуванню комерційних числових кодів, необхідних для 

підтвердження теоретичних результатів; 

- встановлення загального зв'язку між характеристиками розсіяння та 

поглинання, який називається «оптичною теоремою», що адаптована до ДВ 

модульованого електронного пучка; 

- дослідження того, як резонанси на власних модах діелектричних ниток, 

плазмонних модах металевих і графенових оболонок, а також граткових модах 

впливають на ДВ модульованого електронного пучка; 

- вивчення можливостей моніторів положення пучка, побудованих на 

даймерах з резонансних нанониток різної природи: діелектричних ниток з 

високим показником заломлення, металевих ниток, металевих нанотрубок і 

діелектричних ниток, покритих графеном; 

- дослідження власних мод даймерів з нанониток, які розглядаються як 

відкриті резонатори, та визначення порогових умов генерації цих мод у разі 

наявності активних областей. 
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У роботі отримано наступні нові наукові результати: 

- якщо траєкторія пучка частинок зміщується з центрального 

(симетричного) положення між двома нанонитками даймеру, то в спектрах 

розсіяння та поглинання ДВ з’являються раніше відсутні резонанси, пов’язані з 

супермодами даймеру, поля яких ортогональні, в сенсі симетрії, до поля пучка; 

інтенсивності нових резонансних піків пропорційні зсуву пучка; 

- вищевказаний ефект виявлено для високодобротних супермод даймерів з 

діелектричних ниток з великим показником заломлення, тонких нанотрубок з 

благородних металів і ниток з графеновим покриттям при досить високих 

значеннях хімічного потенціалу графену; 

- для спостереження зазначеного ефекту, частоти мод різних азимутальних 

порядків в одному круговому резонаторі, використаних у даймері, повинні бути 

добре віддалені одна від одної; отже, це не спостерігається для плазмонних мод 

даймерів з суцільних круглих нанониток з благородних металів; 

- при аналізі ДВ від скінченних решіток (періодичних структур) з багатьох 

нанониток, вкритих графеном, у частотних спектрах потужності ДВ домінують 

резонанси на плазмонних модах кожної нитки та на граткових модах всієї 

решітки; інтенсивність граткових резонансів суттєво залежить від кількості ниток;  

- «оптичну теорему», відому з теорії розсіяння плоских хвиль, адаптовано 

до ефекту ДВ; це вимагає введення до розглядання комплексних кутів падіння для 

поля пучка електронів; вираз, що отримано, можна застосувати для часткової 

верифікації чисельних результатів, (у дисертації цей вираз задовольняється з 

машинною точністю);  

- виявлено, що якщо радіус одиничної кругової активної нитки, покритої 

графеном, є меншим за 10 μм, то «робочі» плазмонні моди графенової оболонки 

мають значно нижчі частоти і порогові значення посилення в активній області, 

ніж «паразитні» діелектричні моди нитки; у більш товстих нитках всі вказані 

моди стають конкурентоспроможними;  

- якщо відстань між нитками у даймері з двох покритих графеном активних 
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нанониток стає більшою за їхній радіус, тоді всі чотири плазмонних супермоди 

кожного типу утворюють тісні квартети з близькими частотами і порогами; одна з 

супермод може мати поріг, нижчий за поріг подібної моди для одиничної 

нанонитки. 

 

Ключові слова: нанонитка, діелектрик, графен, нанолазер, пучок електронів, 

монітор положення пучка, резонанс, плазмонна мода, граткова мода, поріг 

самозбудження, активна зона. 
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INTRODUCTION 

 

Justification of the choice of research topic.  As known, charged particles, such 

as electrons, radiate electromagnetic waves when moving through the boundary 

between material media or inside such a medium – this is called the transition or the 

Cherenkov radiation, respectively. The radiation of electrons moving in vacuum without 

crossing any material boundaries has also attracted the attention of researchers since 

1950s. The most known example of such effect is the Smith-Purcell radiation [1-13]; it 

is associated with an electron beam flowing over a periodic grating, for instance, ruled 

on a metal surface, across the grooves. Still the Smith-Purcell effect (SPE) is only a 

particular case of more general phenomenon: the radiation of the surface and 

polarization currents induced on the metal and dielectric objects by the electron beams 

flowing in their vicinity however without touching them. This type of electromagnetic-

wave radiation is commonly called the diffraction radiation (DR) [5-14]. 

Microwave-range DR is already used as a convenient method for non-invasive 

diagnostics of beams in accelerators, i.e. for remote sensing of the position and velocity 

of the particle beams [10-14]. Such devices are commonly referred to as beam position 

monitors (BPM). Today, the development of BPM can be extended to the optical range, 

because the emergence and rapid development of nanotechnology opens the way to 

create ensembles of nanosized optical scatterers with controlled shape and location [15-

18]. Nanoscale components introduce very little perturbation to the beam, its velocity 

and trajectory, and therefore its field can be considered fixed. Therefore, the analysis of 

the DR effect can be performed within the classical theory of electromagnetic (EM) 

wave scattering, i.e. as the scattering of the given wave by the objects of known shape 

and material parameters. 

Measuring the DR intensity in the near or far zone, one can monitor the electron-

beam parameters [13, 14]. As BPM is a specific sensor, optimisation of its performance 

requires finding a favourable combination of its element shapes and materials. Here, the 

use the resonance effects is a promising approach. A resonance enhances the DR 
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intensity proportionally to the squared Q-factor of the resonating mode. In the 

microwave range, various coaxial metallic hollow cavities integrated with the drift tubes 

are common. This approach can be extended to the THz and IR ranges if suitable 

resonators shaped as sub-wavelength scatterers are found. One possible approach is the 

use of high-refractive-index materials; however, available today dielectric materials 

have refractive indices within several dozens, so that the resonances on their lowest 

modes entail only moderately sub-wavelength dimensions. The other approach uses the 

noble-metal scatterers, able to support the surface plasmon modes in the visible range 

[19, 20]; however, these modes have rather low Q-factors, due to high losses in noble 

metals. The way out can be seen in the exploitation of the plasmon modes on the 

patterned graphene or graphene-coated scatterers [21, 22]. Note that such configurations 

are already studied as the elements of promising IR and THz range sensors of the host-

medium refractive index and tuneable filters, absorbers, scatterers and antennas [23-27].  

The dielectric and silver scatterers were studied, in particular, in the many works. 

Graphene is new material that consists of a monolayer or a few such layers of 

graphite, i.e. has sub-nanometre thickness. It has remarkable properties like 

transparency in the visible range, mechanic strength, and good electron conductivity in 

the THz and infrared (IR) ranges. The conductivity is a function of the temperature, 

electron relaxation time, frequency and chemical doping. Graphene can support the 

plasmon guided wave at the THz and IR frequencies that makes its electromagnetic 

properties similar to noble metal ones in the visible-light range, however, at much lower 

frequencies. What is principally new, graphene conductivity and hence plasmon effect 

can be tuned using the DC bias, which translates to the chemical potential [21,22]. 

Usually graphene is attached to flat dielectric substrates, however, now curved 

substrates attract an increasing attention [23,24]. Recently, graphene-covered nanowire 

fabrication and synchrotron nanospectroscopy measurements have been reported [25]. 

Note that circular-wire dimers coated with graphene have been studied with commercial 

codes in the context of field forces [26] and cloaking [27], and with in-house code based 

on the local Fourier expansions in the analysis of eigenfrequencies. However, all these 
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works considered the plane wave as the incident field. 

Thus, the task of studying the DR effect in the visible, IR and THz ranges for 

nanoscale structures of circular wires of dielectric, metal and graphene materials is 

timely. 

The object of research is the phenomena of the scattering and absorption of the 

modulated electron beam field by configurations of finite-number circular nanowires 

and nanotubes, as well as the eigenvalue problems for such circular open resonators 

with graphene cover.  

The subject of the study is the resonance and spectral characteristics of the EM 

field scattering and absorption by finite configurations of circular nanowires and 

nanotubes, excited by the modulated beams of charged particles, as well as the 

eigenmodes of such nanowire configurations. 

Research goals and tasks.  The goal of this work is to analyze the DR effect for 

various structures of circular nanowires and nanotubes made of dielectric, metal, and 

graphene. Here, keeping in mind BPM applications, we look for the structures that are 

the most sensitive to variations in the trajectory of the beam and to the changes in its 

velocity. Since the sensitivity of BPM usually improves due to resonances, our analysis 

includes a detailed study of how the resonances on the modes of circular dielectric 

wires, plasmon modes of noble-metal and graphene wires and tubes, and lattice modes 

of finite arrays of wires manifest themselves in DR of modulated electron beam.  

To achieve these goals, the following tasks are set: 

• build a 2-D mathematical model for the scattering of the field of a beam of 

particles from arbitrary ensemble composed of a finite number of dielectric or silver 

wires or tubes of circular cross section; 

• develop a numerical algorithm for calculating the characteristics of the DR-

caused scattering and absorption, as well as fields in the near and far zones of the 

studied structures; 

• investigate how the resonances on the modes of dielectric wires, plasmon modes 

of metal and graphene wires, and lattice modes of the grating made of graphene-covered 
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wires influence the DR of a modulated electron beam; 

• establish a relationship between the DR-caused scattering and absorption 

characteristics and the far-field angular DR that accounts for the configuration of the 

scatterers and for the beam trajectory position (modified Optical theorem); 

• develop recommendations for an optimal design of the optical BPM; 

• calculate the DR problems with commercial codes to validate the theoretical 

results. 

These tasks are accomplished in 5 chapters of the work. 

The first chapter discusses (i) the main methods of analysis of wave scattering by 

circular dielectric cylinder configurations, (ii) representation of the incident field as the 

harmonically modulated charged particles beam field, (iii) complex permittivity of 

silver as a function of the frequency, (iv) description of the graphene conductivity via 

the Kubo formalism, (v) scattering and absorption characteristics and beam field 

adapted Optical Theorem, and (vi) Lasing Eigenvalue Problem statement. Here, the 

method review includes the Discrete Dipole Approximation method, Finite-Difference 

Time-Domain method, method of separation of variables and Method of Analytical 

Regularization. 

The second chapter is dedicated to the statement of the scattering problem for a 

finite number of circular wires excited by the electron beam and numerical investigation 

of the DR-caused scattering and absorption characteristics in the visible range for a 

single dielectric nanowire and dimer of twin dielectric nanowires.     

The third chapter includes analysis of the DR-caused scattering and absorption 

characteristics for a stand-alone circular silver nanowire and twin circular silver 

nanowires and nanotubes in the visible range. 

In the fourth chapter, the DR-caused scattering and absorption characteristics in 

the THz range are numerically investigated for a stand-alone circular dielectric 

nanowire covered with graphene, twin graphene-coated nanowires configuration and 

finite array of circular graphene-covered dielectric nanowires.   

The fifth chapter presents the implementation of the Lasing Eigenvalue Problem 
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(LEP) approach for study of the EM field in the presence of a single circular quantum 

wire (QW) made of a gain material and wrapped in graphene cover and a dimer of two 

identical graphene-covered QWs, at the threshold of stationary emission. 

Research methods. The research methods include the theory of 2-D boundary-

value problems of classical electromagnetics which consists of the following: the 

Helmholtz equation with corresponding wavenumber in each partial domain, the 

boundary conditions at the wire cross-sectional contours, the Sommerfeld radiation 

condition at infinity, and the condition of local power finiteness. These conditions 

guarantee the uniqueness of the boundary-value problem solution. As for the graphene 

covers, they are assumed to be zero-thickness conducting tubes. Here, the Kubo 

formalism is applied to characterize graphene’s complex-valued surface impedance and 

the resistive-type boundary conditions are requested on the graphene. Further, we use 

the circular shape of the nanowires and apply the field expansions in the Fourier series 

in local polar coordinates of each wire, combined with the Graf addition theorem for the 

cylindrical functions. On substitution into the boundary conditions, this leads to the 

Fredholm second kind matrix equations for the field expansion coefficients. Therefore, 

such a technique belongs to the family of the methods of analytical regularization 

(MAR). The Fredholm nature guarantees that the solutions of the truncated matrix 

equations converge to the exact solutions if the truncation number gets larger. It is 

expected that such a code will outperform, in speed, the existing commercial codes in 

hundreds of times and enable easy control of the accuracy of computations. We carry 

out computations of DR-caused scattering and absorption characteristics, as well as near 

and far field patterns, especially at the resonance frequencies. 

Scientific novelty of obtained results. The following new results have been 

personally obtained by the author: 

• if the particle beam trajectory is shifted from the central (symmetric) 

position between the twin nanowires, then the DR scattering and absorption spectra 

display appearance of previously absent resonances, associated with the dimer 

supermodes whose fields are orthogonal, in symmetry, to the beam field; the intensities 
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of new peaks are proportional of the beam displacement or its angular shift, 

• the above-mentioned effect has been found for the high-Q supermodes of 

the dimers of high refractive-index dielectric wires, thin noble-metal nanotubes, and 

graphene-covered wires at the high enough values of graphene’s chemical potential, 

• to observe the mentioned effect, the frequencies of the modes of different 

azimuthal orders in single circular resonator, used in the dimer, have to be well 

separated from each other; therefore, it is not observed for the plasmon modes of the 

dimers of solid circular noble-metal nanowires, 

• in the analysis of DR from sparse finite periodic arrays of many graphene-

covered nanowires, the dominant feature in the frequency spectra of DR power are the 

resonances on the plasmon modes of each wire and the lattice modes of the whole array; 

the latter resonance peak intensities strongly depend on the number of wires, 

• the Optical Theorem (OT), known previously in the plane-wave scattering, 

has been adapted to the DR effect: that entails introduction of the complex-valued 

angles of incidence; the derived expression can be used for partial validation of 

numerical codes (in the thesis, OT is satisfied with machine precision) 

• in the analysis of the lasing threshold conditions of the modes of single 

circular graphene-covered active wire, we have found that if the wire radius is larger 

than 10 μm, then the “parasitic” dielectric wire modes become competitive with the 

“working” plasmon modes both in the frequencies and in the threshold values of the 

gain; otherwise, the plasmon mode frequencies and thresholds are much lower. 

• if separation between the wires in graphene-covered active circular 

nanowire dimer becomes larger than their radius, then all four plasmon supermodes of 

the lowest types form tight quartets; one of the supermodes can have a lower threshold 

than the similar mode of the stand-alone nanowire 

Practical value of obtained results. The proposed method and the developed 

numerical algorithms have controlled accuracy and can be applied for the trusted and 

time-efficient computation of the DR-caused scattering and absorption by nanowire 

configurations made of dielectric, noble-metal and graphene, using the moderate 
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computer hardware. 

The obtained results of numerical analysis of the DR-caused scattering and 

absorption characteristics versus the frequency and other parameters, the far and near 

field patterns of the wave emission from charged particle beam moving near various 

nanowire scatterers and gratings of them have fundamental significance. They have also 

a wide range of applications including the BPM and DLA designs. The analysis of 

thresholds conditions for the plasmon modes of the considered in the thesis 

nanolasers can help in the creation of new, more efficient sources of waves. 

The developed computational codes of the main scattering and absorption 

characteristics permit using them as a core of the software for numerical optimization of 

optical configurations, key elements of which are circular nanowires. 

Personal contribution of the author. The main results presented in the 

dissertation were obtained by the author. The contribution to the co-authored works  in 

[A1-A25] consists in the derivation of the basic equations, the development of 

numerical algorithms, the writing of the corresponding codes, as well as in the 

systematic calculation of the DR scattering and absorption characteristics, the DR 

patterns in the near and far zones, and in the interpretation of the obtained results. All 

conference papers were presented by the author personally. 

Dissemination of results. The results of the work were presented and discussed 

at the following scientific seminars: IRE NASU (Prof. P. M. Melezhyk), Institut 

d'Électronique et des technologies du numérique IETR, Universite de Rennes 1, France 

(Prof. R. Sauleau), Institute of Experimental Physics, University of Wroclaw, Poland 

(Prof. A. Szczepkowicz), and The Institute of Spintronics and Quantum Information 

(ISQI), Adam Mickiewicz University in Poznan, Poland (Prof.  J. Klos). Besides, they 

were presented at the following international conferences, workshops and symposia: 

• IEEE Conference on Mathematical Methods in Electromagnetic Theory 

(MMET), Kyiv (2018); 

• IEEE International Workshop on Direct and Inverse Problems of 

Electromagnetic and Acoustic Wave Theory (DIPED), Tbilisi (2018); 
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• IEEE International Conferences on Electronics and Nanotechnologies 
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Copenhagen (2020), Madrid (2022), Florence (2023); 
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CHAPTER 1 LITERATURE REVIEW AND RESEARCH METHODS 

 

1.1 Methods of analysis of wave scattering from circular dielectric cylinders 

 

Since the topic of the dissertation is the theoretical study of the phenomenon of 

the modulated electron-beam field scattering from the structures made of circular wires 

of various materials, in this section we present a short overview of the main methods of 

the full-wave modeling of the 2-D scattering from such objects.  

The problem of time-harmonic EM wave scattering and absorption by circular 

dielectric cylinders can be analyzed using several methods. Here are a few existing 

methods commonly employed, 

- Discrete Dipole Approximation (DDA): The DDA is a numerical technique 

commonly used to analyze the light scattering from particles. It represents the particle as 

a cluster of polarizable dipoles and solves the scattering problem by calculating the re-

radiation of these dipoles at the given incident light. The DDA can be used to 

investigate the scattering and absorption properties of circular dielectric cylinders and 

provides information about the scattered field, extinction, and absorption cross-sections. 

Originally, the DDA was proposed by Purcell and Pennypacker, who substituted 

the scatterer with a collection of point dipoles [28]. The interaction between these 

dipoles and the incident field results in a system of linear equations, which is solved to 

determine the dipole polarization amplitudes [29]. All the necessary scattering 

quantities can be derived from these polarization amplitudes. Later on, DDA was 

developed and popularized by Draine and others, including developing the free-to-

public computer code DDSCAT [30-33]. Then, Goedecke and O’Brien showed another 

way of deriving the DDA:  they discretized the volume electric field integral equation 

by means of dividing their scatterer into fractional cubical sub-volumes [34]. It is worth 

noting that the final equations resulting from both approaches to derive the DDA are 

essentially identical [28]. There are DDA equivalent methods developed by others 

researchers in the same time. They were called the volume integral equation formulation 
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and the digitized Green’s function [34, 35].  Additionally, there are various methods of 

moments (MoM) which are similar to DDA, due to the fact that they are also based on 

the volume integral equations for the EM fields [36, 37]. In contrast, DDA was simply 

explained by Yurkin and Hoekstra as substituting any scatterer with a set of dipoles that 

interact with each other [28]. 

All DDA methods have different nature of errors. In a number of works, the 

origin of errors in the DDA was examined in the attempt to separate and compare shape 

and discretization errors [38-42]; however, no definite conclusions were reached. The 

uncertainty was due to the indirect (empirical) methods used that have inherent 

interpretation problems.  

We would like to emphasize that DDA convergence, with larger number of the 

dipoles, cannot be established mathematically. In the case of volume integral equations, 

this relates to their singular nature. Overall, this method has gained popularity in the 

field of light scattering and has been extensively developed by multiple authors; there is 

a large amount of reviews on both the theory and numerical aspects [43-45]. 

- Finite-Difference Time-Domain (FDTD) Method: The FDTD method is a 

numerical technique used to solve Maxwell's equations and simulate the propagation of 

light through various structures, including dielectric cylinders. This technique has 

proven to be a universal and relatively simple computational method for solving the 

scattering of EM waves from wide class of scatterers, especially those with complex 

geometries and non-uniform compositions [46]. It discretizes the space and time 

domains and numerically solves the Maxwell differential equations by replacing the 

derivatives with finite differences. That provides valuable insights into the diffraction 

patterns, scattering efficiencies, and field patterns. 

The method was initially introduced by K. Yee and subsequently enhanced by 

other researchers in the early 1970s [47].  The uniqueness of Yee's concept lies in the 

spatial allocation of electric and magnetic field components and the time-stepping 

approach for the procedure evolution. The method was not wildly recognized until the 

1980s, when the absorbing boundary conditions of high quality were derived. Then 



30  

Taflove, Kunz, Holland and other engineers and scientists worked on FDTD and 

demonstrated a number of its advantages, which provided the popularity of FDTD [48-

50]. By default, it is considered that FDTD accuracy is improved (i.e. its error is 

reduced) by a denser meshing. However, the spatial and temporal steps (cell sizes) in 

FDTD cannot be arbitrarily small. This is because denser meshing quickly leads to 

prohibitively large-size matrices and, hence, huge computation time. 

Over the past years, the FDTD technique has found application in solving 

interactions between obstacles and EM waves in various problems, including antenna 

scattering, microstrip structures numerical modeling, and the study of EM absorption by 

human body tissues [51-55]. 

Still, FDTD needs placing a time-dependent (pulse) source at one point of 

computational domain and computing the time-dependent EM field at another point. 

Therefore, the results depend on the “goodness” of choice of these points. 

Besides, FDTD simulations have limitations on the maximum allowable temporal 

step. If the step size is too large, the algorithm yields unstable results, rendering the 

obtained values meaningless and prone to rapidly approaching infinity. Additionally, 

FDTD algorithms often impose significant demands on computational resources, 

particularly when dealing with open-domain or resonant problems [56]. This limits 

technique integration with optimization routines. However, these requirements are 

considerably diminished when using 2-D versions of FDTD [57].  

Further, FDTD codes suffer from another inherent drawback: in both 2-D and 3-

D, the accuracy of the analysis can suffer near high-Q natural resonances [58,59]. This 

issue is crucial for dielectric scatterers, which we consider in this dissertation. If it is 

necessary to obtain not a time but a frequency dependence of the field, then the Fourier 

transform has to be used. This implies truncation of the integration domain, in time, at 

certain finite value. The choice of that value is important, however, it cannot be too 

large to make the computations limited by, at least, minutes and small hours. This 

makes correct computing of resonances with Q > 105 extremely time-consuming. 

Recently, the numerical results comparison verified the satisfactory accuracy of FDTD 
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when used outside the high-Q resonances, while also demonstrating a significant 

increase in computational error near these resonances [60]. Note that complete 

elimination of these errors is not achieved even with denser meshing and, 

mathematically, the convergence of FDTD codes cannot be guaranteed. 

There is big amount of investigations on improving the performance of FDTD 

and its agreement with the experiments [61-64]. Currently, owing to its versatility, the 

method serves as the foundation for commercial and open-source software packages 

used for analyzing, solving, and simulating a wide range of physical and engineering 

problems. 

- Separation of variables for single wire (sometimes called Mie theory): the 

concept of separating the variables was initially introduced by Lord Rayleigh (J. Strutt) 

in 1881 in the analysis of waveguides [65]. This is a classical approach, which provides 

a rigorous mathematical framework for calculating the scattering and absorption 

properties of dielectric cylinders and other simple-shape objects. It takes into account 

the size parameter (the ratio of the wavelength of light to the particle size) and yields 

detailed information about the angular distribution of scattered light, extinction, and 

absorption efficiencies. Note that Rayleigh used this method in the case of 2-D domains 

with circular boundaries. 

As known, EM waves obey the Maxwell equations [66]. The separation of 

variables solution to the canonical Maxwellian problem of the scattering of tome-

harmonic EM waves by a spherical object in the frequency domain was presented by 

Mie in 1908 [67]. The paper [68] contains a generalization of Mie theory to the time 

domain. However, almost at the same time as Mie's work, Lorentz and Debye 

developed their own analytical solutions for the spherical scatterers [69,70]. Moreover, 

Logan in 1965 found and wrote a review of all "lost" pieces of knowledge of 

contributed authors in this theory [71].  The limited knowledge about these alternative 

works and complete oblivion of Rayleigh role by the 20th century have led to the 

commonly used terms "Mie series," "Mie approach," or "Lorentz-Debye-Mie theory" 

being attributed to all separation of variables solutions. In contrast to the classical 
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Lorentz-Mie-Debye theory (LMDT), which primarily examined the scattering of plane 

waves by stand-alone objects, recent research has centered around the Generalized 

Lorentz-Mie theory (GLMT), which studies the time-harmonic wave scattering by 

multiple spheres and spheroids [72-75].   

Mathematically, the method of separation of variables is a commonly employed 

approach for solving the partial differential equations. It assumes that the solution can 

be expressed as a product of several functions, each dependent on a single independent 

variable. Following this assumption, it is possible to derive precise analytic solutions for 

problems concerning the scattering of EM waves by objects whose surfaces align with 

coordinate surfaces in certain curvilinear orthogonal systems. The exact solutions for 

the scattering from circular cylinders can be obtained by implementing this method, 

where the terms are products of cylindrical functions of the radial coordinate and 

trigonometric function of the azimuth coordinate, although they take the form of infinite 

series [77-80]. However, these series are always convergent and simple rules for the 

choice of their truncation order can be established.  

The separation of variables method is not applicable to more complex than 

canonical shapes, such as circular cylinders and spheres, including layered ones. In fact, 

this is the only disadvantage of the method.  

- Method of Analytical Regularization (MAR) based on single-wire part 

inversion. The numerical methods based on reducing the EM wave scattering problem 

associated with multiple circular cylinders to an infinite matrix equation, which is an 

equation of the second kind, have been known since long ago [77-79, 81-85]. However, 

the associated algorithms diverge as the order of matrix truncation increases. Sologub 

was apparently the first who concluded the need to cast the equations of the second kind 

to the Fredholm form [86]. Later and independently, Bogdanov came to the same 

conclusion in [87]. Fredholm's theory can be used for operator (integral or infinite-

matrix) equations where the operator is a sum of a continuously invertible operator and 

a completely continuous operator [88]. This entails that for such operator equations, the 

existence of the exact solution and the convergence of the numerical code can be 
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mathematically established [89]. 

As formulated in [90], MAR is a collective name for the methods, which involve 

transformation of a first-kind or strongly-singular second-kind operator equation, 

usually derived in the wave-scattering theory, into a Fredholm second-kind operator 

equation – say, integral equation with a smooth (square-integrable) kernel. This ensures 

the point-wise convergence of typical discretization schemes. As this is achieved by 

analytically inverting the singular component of the original equation, MAR is also 

sometimes called the semi-inversion method. The term MAR was firstly introduced by 

Muskhelishvili in [91]. It also should be acknowledged that the concept of MAR was 

developed by the 19th century mathematicians: Hilbert, Poincare, and Noether, in the 

theory of singular integral equations. 

Furthermore, other functional methods such as Titchmarsh, Wiener-Hopf, 

Cauchy, Abel, and Riemann-Hilbert Problem techniques can be employed to achieve 

the analytical inversion of the static or high-frequency component of the integral 

operator. In certain problems, both the analytical regularization and discretization of the 

integral equation are carried out concurrently, resulting in methods known as analytical 

preconditioning [92].  

If the convergence is ensured (by the Fredholm theory), the accuracy of 

computations can be effectively controlled by adjusting the truncation order of the 

matrix. In theory, the error can be minimized to the machine precision, a level of 

accuracy that is beyond what is achievable with commercial codes currently available. 

The MAR methods, along with others, offer powerful tools for analyzing EM 

wave scattering from circular cylinders, enabling researchers to investigate scattering 

phenomena, optimize device designs, and understand the emission of waves from 

nanoscale structures. In this dissertation, the author applies the method of separation of 

variables to the analysis of the scattering from simple single-cylinder configurations. 

The MAR is applied to more complicated, multiple-cylinder structures, based on the 

analytical inversion of the single-cylinder part of the full problem. 
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1.2 Field of a harmonically modulated beam of charged particles 

 

In all problems studied in this work, the incident wave is the field of the time 

harmonically modulated electron beam, therefore, this section is devoted to the 

explanation of its presentation.  

 

 

 

Fig. 1.1 Cross-section sketch of time-harmonically modulated beam of charged 

particles 

 

Consider an unbounded two-dimensional (2D) flat electron beam moving along 

the straight trajectory, with a fixed velocity v c= (   < 1), see Fig. 1.1. The charge 

density function, if modulated in time in a harmonic manner, can be presented as 

 

0 ( )exp[ ( / )]y h i kx t    = − − ,                                       (1.1) 

 

where ( )   is the Dirac delta function,   and 0  are the frequency and the amplitude of 

beam modulation, /k c=  is  the free-space wavenumber, / 1с =   is the relative 

beam velocity, c is the light velocity, and h is the beam distance from x-axis.  

We will consider the DR electromagnetic-field problems in the given-current 

approximation. In this case the incident wave is the field of the sheet current beam (1.1) 

moving in the free space. As it was shown in [3, 4], this field has the form of a slow 
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inhomogeneous plane wave, the only nonzero component of the magnetic field of     

which is   

 

   
| | /

( , ) sign( )
q y h ikx

zH x y A y h e e



− −

= −
                            (1.2) 

 

where /q k = , 2 1/2(1 ) = − , function sign( ) 1y h− =   is the sign of the expression 

in the brackets, the time dependence is omitted, and A is a constant, which equals to 

0 / 2c  in SI units. This is a surface wave running along the beam trajectory in the 

positive direction of the x-axis and decaying exponentially in the normal direction. It 

has a finite jump corresponding to the current at the beam trajectory. Note that field 

(1.2) is antisymmetric function of the coordinate y with respect to the beam trajectory 

that is a drastic difference from more conventional in optics plane-wave field, which is 

symmetric with respect to the propagation direction. To justify the considered approach, 

it is worth noting that, in the real life, the modulation of the electron beam can be 

achieved by its preliminary bunching in a periodic waveguide or through direct 

modulation by a laser emission [11,17]. 

 

1.3 Complex permittivity of silver as a function of frequency  

 

As an alternative to classical high-refractive-index materials, truly nanoscale 

resonance effects are related to the localized surface plasmon (LSP) modes of deeply 

sub-wavelength noble-metal (gold, silver, copper) particles and wires. Here, two noble 

metals are especially attractive: the gold, because of its chemical stability, and the 

silver, due to the smallest optical losses. Noble metals can be characterized with 

complex relative permittivity ( )   in the visible range, which has negative real part, 

Re ( ) 0   , due to the dominant contribution of the plasma of the free electron gas. To 

showcase plasmonic effects on nanowires, silver is a preferable material due to its lower 

losses ( Im ( ) 0   ) compared to gold or copper. In this thesis, a part of research is 
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dedicated to DR of the modulated beam of charged particles in the presence of silver 

nanowires and nanotubes. That is why, in this section it is important to explain the 

complex permittivity of silver material in detail. 

According to the Drude theory, the complex-valued relative dielectric permittivity 

can be characterized analytically simple quadratic function of the frequency. This 

formula involves the static permittivity and the plasma frequency of the material. 

Accuracy of Drude theory gets worse if the frequency increases. 

As an alternative, the Johnson and Christy experimental data are widely adopted 

to incorporate the wavelength-dependence optical response of bulk silver [93]. The 

spectra of the real and imaginary parts of ( )   are shown in the whole visible-light 

range on panel (a) of Fig. 1.2 and in the ultra-violet range - on panel (b). It is worth 

noting that the Drude formula, being a reasonable approximation at longer waves, fails 

to provide accurate characterization in the ultra-violet, see [95].  

 

       

(a) (b) 

 

Fig. 1.2 Complex relative permittivity function of bulk silver versus the wavelength 

in the optical range (a), and its zoom in a grey-boundary ultra-violet domain (b) 

 

As one can see, there are two remarkable wavelengths, both laying in the ultra-

violet. One is around 306 nm where Re 0.942 =  that is quite close to +1. This means 

that silver is optically well-transparent at this wavelength although the losses remain 
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significant as Im 1.97 = . We stress that this effect of “quasi-invisibility” cannot be 

reproduced with the Drude formula for the dielectric function of silver. This justifies our 

choice of experimental data in the analysis of silver scatterers of the visible light.  

The other important wavelength value is around 337.7 nm, where Re 1 = − . 

This is the approximate quasi-static “textbook” value for the collective resonance on the 

LSP modes of a single circular metal wire in the free space [15,17,19]. It is valid if the 

losses can be neglected, Im 0 = . Although for silver Im 0.3 =  at that wavelength, it 

predicts the LSP-caused peak of absorbance and scattering within the 5% accuracy if 

the silver wire is thinner than 10 nm in radius.  

Note also, that the bulk permittivity is applicable if the metal sample size is 

significantly larger than the free-of-collisions electron path (a few nanometers).  

The data of Johnson and Christy are widely acknowledged as reliable [94], 

however, are known only at discrete values of wavelength. To obtain the permittivity of 

silver at arbitrary wavelength, we employ the Akima spline interpolation algorithm. 

This cubic-spline technique generates smooth curves that precisely match the tabulated 

values, ensuring continuity and differentiability with respect to wavelength [95].  

 

1.4 Graphene and its characteristics via the Kubo formalism 

 

In this thesis, a part of research involves DR from circular wires, covered with 

one more type of plasmonic material - graphene. Therefore, here we summarize the 

information about graphene needed in our computations. 

Graphene is new material that consists of a monolayer or a few such layers of 

graphite, i.e. has sub-nanometer thickness [21,96]. It has remarkable properties like 

transparency in the visible range, mechanic strength, and good electron conductivity in 

the THz and infrared (IR) ranges. The conductivity is a function of the temperature, 

frequency and graphene parameters. Graphene can support the plasmon guided wave at 

the THz and IR frequencies that makes its electromagnetic properties similar to noble 

metal ones in the visible-light range, however, at much lower frequencies. What is 
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principally new, graphene conductivity and hence plasmon effect can be tuned using the 

DC bias, which translates to the chemical potential [22]. Usually graphene is attached to 

flat dielectric substrates, however, now curved substrates attract an increasing attention 

[23,24]. The initial production of graphene occurred in 2004 through the mechanical 

exfoliation of highly oriented pyrolytic graphite [97]. Recently, graphene-covered 

nanowire fabrication and synchrotron nanospectroscopy measurements have been 

reported in [25]. More recently, a "green", safe, and fast method to prepare graphene 

oxide nanosheets for functional applications as an adsorbent has been developed [98]. 

Note that circular-wire dimers coated with graphene have been studied with commercial 

codes in the context of field forces [26] and cloaking [27], and with in-house code based 

on the local Fourier expansions in the analysis of eigenfrequencies [99]. 

Measuring the DR intensity in the near or far zone, one can monitor the electron-

beam parameters. The resonance effects are promising for the sensor devices, such as 

BPM. A resonance enhances the DR intensity proportionally to associated Q-factor of 

the resonating mode. This approach can be extended to the THz and IR ranges if 

suitable resonators shaped as sub-wavelength scatterers are found. As it is described in 

this dissertation, one possible approach is the use of high-refractive-index materials; 

however, available today dielectric materials have refractive indices within several 

dozens, so that the resonances on their lowest modes entail only moderately sub-

wavelength dimensions. The other promising approach uses the noble-metal scatterers, 

able to support the surface plasmon modes in the visible range; however, these modes 

have rather low Q-factors (5-20). The more advantageous direction way can be seen in 

the exploitation of the plasmon modes on the patterned graphene or graphene-coated 

scatterers. Note that such configurations are already studied as the elements of 

promising IR and THz range sensors of the host-medium refractive index [100] and 

tuneable filers [101,102], absorbers [103], scatterers [104] and antennas [105]. The Q-

factors of the graphene plasmon modes in THz and IR ranges have moderate values (20-

100) that is higher than those of a solid metal wire in the visible-light range. This makes 

graphene-coated dielectric micro- and nanowires attractive as resonance scatterers in 
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many applications including DR-based BPMs. To investigate the EM wave scattering 

by a graphene object, it is essential to blend the Maxwell boundary value problem with 

a quantum model that represents the conductivity of graphene [106]. 

The most widely adopted today model of the electron mobility in the graphene 

monolayer is the Kubo formalism [107], applied in numerous publications [108-110]. 

Here, the graphene thickness is considered zero, and its surface conductivity, 

( , , , )c T     depends on the cyclic frequency ω, chemical potential μc, electron 

relaxation time τ and temperature T. This value consists of two contributions, 

intra inter  = + , which are the intraband and interband conductivities. Namely, 
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and inter is expressed as an integral of known functions (see [107]). If c Bk T  , that 

integral can be reduced to simple expression, 
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Then, the normalized surface impedance (or resistivity) of graphene is 

 

 
( )0 intra inter

1
( )Z

Z


 
=

+
                                              (1.5) 

 

where 
0 0 0/Z  =  is the impedance of the free space. Note that the hexagonal fine 

structure of graphene has the cell size around 10 nm. Therefore, scalar infinite-sheet 

expressions for graphene’s conductivity are applicable (have good accuracy), if the size 

of the patterned graphene is around 100 nm or larger. The relative contribution of two 
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terms into (1.5) depends on the frequency and chemical potential. This can be 

understood from the curves in Fig. 1.3 (a) and the color map in Fig. 1.3 (b).  

The interband conductivity, in absolute value, is smaller than the intraband one, 

which is called the Drude model term, in a wide range from the statics to a certain high 

frequency, df  [107]. The upper bound here scales with the chemical potential, due to 

the dominance of the term containing the factor ( )
1

c Bk T
−

 in the Kubo formulas. For 

instance, if  0.5 ps, =  300 KT =  and 0.25 eV,c =  then inter intra0.1   at the 

frequencies below 40df =  THz, while if 0.5 eV,c =  then the same is valid at the 

frequencies below 80df =  THz. Therefore, at df f  we can safely neglect the 

interband conductivity. 

 

 
 

(a) (b) 

 

Fig. 1.3 The frequency dependences of the intraband and interband surface 

conductivities of the monolayer graphene sheet according to the Kubo formalism (a) and 

the ratio of these two values as a function of the frequency and the chemical potential 

(b). Electron relaxation time is 0.5 ps, = temperature is 300 KT =  

 

Still, above the mentioned frequency, which lays in the near infrared or visible 

light range, the description of graphene should take into account both types of 
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conductivity. Below, we will use the full expression (1.5) in the numerical analysis and 

the simplified description using only the intraband term - in the analytical 

characterization of the plasmon mode frequencies and thresholds. 

 

1.5 Scattering and absorption cross-sections, optical theorem 

 

This section provides an overview of the scattering and absorption characteristics 

used in our studies, as well as the Optical Theorem (OT) that establishes their 

relationship.  

When a particle is exposed to a time-harmonic EM plane wave with specific 

attributes, the power and angular dispersion of the scattered light, as well as the 

absorbed power, are intricately dependent on the particle's inherent properties such as 

shape, size, orientation, and composition materials. Still, these powers obey the power 

conservation law. Similar to the plane-wave case, the scattering of electron beam field 

from individual scatterers or their finite ensembles follows specific regularities that 

stem from the same law of power conservation. Consider at first the plane-wave,  

int ikx

zH e= , scattering – see Fig.1.4 (a). 

 

 
 

(a) (b) 

 

Fig. 1.4 Cross-sectional geometry of a plane wave incident on a circular dielectric wire 

(a) and an electron beam moving near the same wire (b) 



42  

The total scattering cross section (TSCS) serves as a convenient characteristic of 

the scattering efficiency. It is introduced as an integral over all possible directions in 

space from the radial component of the averaged over the period Poynting vector 

(power transfer vector) of the scattered field.  

 

2
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lim Re lim Re

Re Re
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 
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where in the case of the H-polarization (2) *1
2r zE H = , and in  is the amplitude of the 

Poynting vector of the incident plane wave. If an incident plane wave is H-polarized and 

has a unit amplitude, then 
0 / 2in Z = .  

Taking into account that E
 is expressed through zH  by means of 
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 and zH  has the form ( ) 2(2)

2( , ) 2 / ( )ik rH r i k r e    in the far zone (this is the 

Sommerfeld radiation condition), we get that 
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The absorption cross-section (ACS) serves for characterizing the averaged over 

the period power, which is absorbed by lossy material. For instance, for graphene-

covered lossless circular dielectric wire it is given as 

2
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 =  ,                                           (1.9) 
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where Z is the normalized surface impedance of graphene, see section 1.4. 

This quantity can be also reduced to the following form: 

 

2
2

0

Re ( )abs R Z w d


   =  ,                                         (1.10) 

 

where ( ) 0 int( )( , ) ( , ) ( , ) ( , )i ext i

z z zw a H a H a H a   = + −  is the surface current induced 

on the graphene cover. 

The sum of SCS and ACS is known as the extinction cross-section (ECS), 

ext sc abs  = + . In the plane wave scattering, this quantity is linked to the far-field 

scattering pattern magnitude in the forward direction by the expression known as 

Optical Theorem [19],  

4
Re (0)ext

k
 = −  ,                                            (1.11) 

 

As follows from (1.11), ACS can be also found from only the far-field quantities, 

 

4
Re (0)abs sc

k
 = −  − ,                                         (1.12) 

  

OT has the physical meaning of the law of conservation of the electromagnetic 

field power when a plane time-harmonic wave is scattered by a certain body located in 

the fire space. To derive (1.11), one has to take the real part of the Poynting Complex 

Theorem, applied to two functions: the total field and its complex conjugate, in a finite 

region, which is bounded by two non-intersecting surfaces, inner and outer, and the 

scattering body is inside the inner surface. After contracting the inner surface to the 

origin of coordinates, and stretching the external one to the sphere of large radius, one 

uses the boundary and the radiation condition, respectively, to arrive at the final result.  

Therefore, OT is a convenient and powerful tool for partially checking the 
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calculations correctness. However, one should keep in mind that this is only a necessary 

condition of the correctness, and not a sufficient one. 

Turning now to the DR of a modulated electron beam (see Fig. 1.4 (b)), we have 

not a plane wave incident on a scatterer, but the field (1.2) of section 1.2. 

Nevertheless, if we take into account that the scatterer on panel (b) is located 

below the beam trajectory and introduce the complex incidence angle  , such that  

 

cos 1/ , sin /i    = = ,                                   (1.13) 

 

then we can present the incident field (1.2) as generalized plane wave,  

 

cos sin
( , )

iqh ikx iky

zH x y h A e e
 


− +

 = − ,                  (1.14) 

 

Now, we can repeat all steps of the plane-wave case, normalize the scattered 

power by the maximum value of the (1.14) Poynting vector  
2

0( ) / 2Z A , and obtain 
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Similarly, we derive the OT, adapted to the DR of the modulated electron beam, 
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1.6 Lasing Eigenvalue Problem 

 

In the scope of the dissertation research, the author has also studied the natural 

modes of circular nanowire configurations, using the lasing eigenvalue problem (LEP). 

Thus, the LEP statement is introduced in this subsection in detail. 

From the viewpoint of the Maxwell theory of time-harmonic EM waves, the 

lasing can be conveniently viewed as the existence of the real-valued eigenfrequency 

(natural mode frequency) of an open resonator. 

As follows from the Poynting theorem, arbitrary passive open resonator 

eigenfrequencies can be only complex, with non-zero imaginary parts that corresponds 

to finite radiation losses. Therefore, in order to emit electromagnetic wave, which does 

not attenuate in time, an open resonator must contain an active zone filled in with the 

gain material. In practice, such “quantum” materials can be various semiconductors, 

dye-doped polymers, or crystalline materials doped with ions of erbium or some other 

rare-earth elements. All of them are able to demonstrate, under pumping, the inverse 

population of electronic levels and the stimulated emission of light. Within macroscopic 

electromagnetics, these properties are translated to the "negative losses" that is 

expressed, for non-magnetic materials, by the corresponding sign of the imaginary part 

of the dielectric permittivity, Im , and refractive index Im  . If the time dependence is 

chosen as 
i te −

, then the gain material has Im 0   and Im 0  . 

Therefore, for a generic cavity under the pumping (Fig.1.5), the LEP assumes that 

at least a part of the cavity domain is filled in with a gain material that is nonmagnetic 

and has a complex refractive index with nonzero negative imaginary part, i  = − , 

where   is known refractive index and 0   is unknown threshold gain index. The 

surrounding media is assumed nonmagnetic as well and lossless [111]. Passive 

dielectric cavities are known to possess an infinite number of discrete complex-valued 

natural frequencies or wavenumbers sk , each associated with certain natural mode or 

non-zero EM field, { , }s sE H  (s = 1,2, …).  The active region, thanks to the gain 
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material, allows for the compensation of radiation losses associated with any specific 

mode, resulting in the real-valued natural wavenumber ( Res sk k=  ) for that mode. The 

related threshold gain value 0s   is mode-specific, i.e. is different for different modes. 

From the mathematical point of view, the search for  the real values of 
sk  and 

s , and 

the associated modal fields in the near and far zones can be formulated as an 

electromagnetic eigenvalue problem, i.e. similar to the scattering problem but without 

the incident field [112].  

 

 

 

Fig. 1.5. Cross-sectional geometry of a generic open resonator, equipped with an active 

region, Va. Here, Vp and Vf are the passive and free-space parts of the resonator. Rh is 

the radius of the open resonator volume - see [149] for details 

 

 

Thus, within the LEP, one has to look for such pairs of real numbers ( , )s sk   that 

generate non-zero functions ,s sE H , which solve the full-wave boundary-value problem 

for the Maxwell equations with exact boundary conditions and radiation condition at 

infinity. The linear nature of a boundary-value problem for the LEP is justified by the 

zero field amplitude of any real laser as dynamic source at the threshold.   

Note that, after discretization, the LEP is always reduced to a complex-valued 
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transcendental or determinantal equation. This yields two equations, for the vanishing of 

the real and imaginary parts, i.e. exactly what is needed to find the pair ( , )s sk  . It is also 

important to emphasize that a real value for 
sk  indicates that the natural mode at the 

lasing threshold does not experience time decay and its field follows typical spatial 

decay pattern of either cylindrical wave, 1/2(R )O  in 2-D, or spherical wave, 1(R )O −  in 3-

D. Therefore, the condition at infinity can be taken as conventional Sommerfeld or 

Silver-Muller condition of radiation, respectively. 

Since 2004, the LEP-based analyses have been performed and published for the 

modes of various 2-D cavities with active regions: stand-alone circular ones [112], 

dimers [122] and cyclic photonic molecules [121] of circular active cavities, kite-shaped 

[111], elliptic [151], and other ones. One of the most impressive results was the 

explanation, using LEP, of the fact that the lowest-thresholds modes of elliptic cavity 

with centered circular active region are not the whispering-gallery (WG) modes but the 

so-called bow-tie modes. The reason is that the latter modes have much larger overlap 

between the mode electric field and the active region, than the former. 

More recently, LEP approach has been successfully applied to quantify the 

threshold conditions of 2-D noble-metal nanolasers shaped as silver strip [152] and 

silver tube [153] inside the active circular wire. 

It is worth to note that the other LEP-like formulations exist, see [113-117], 

where the threshold gain is characterized with the aid of Im 0   instead of   or with the 

product, g k= , which is the gain per wavelength.  

Note that, in reality, the gain index of active material depends on the frequency, 

usually as a bell-like function reaching maximum at a certain central frequency, say, c , 

which is material-specific. To reflect the frequency dispersion of the gain index, one can 

introduce the latter function into the LEP as, say, 2 2exp[ ( ) ]c c    = − − , and then look 

for the mode-specific eigenvalue pairs ( , )s sk  . Still, even without this modification, LEP 

enables one to compare various modes by their thresholds. 
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Conclusions to Chapter 1  

 

- In this Chapter, several methods of analysis of EM diffraction from 

circular dielectric cylinders have been presented briefly and their advantages and 

disadvantages have been discussed. The convergence of MAR is emphasized. 

- The time-harmonically modulated electron beam field has been presented 

and described. It is emphasized that this field (i) is H-polarized, (ii) is a slow surface 

wave, compressed to the beam trajectory, (iii) is anti-symmetric with respect to the 

trajectory, (iv) its jump across the trajectory equals the beam current. 

- The complex permittivity of a noble metal such as silver has been 

explained. The experimental data by Johnson and Christy has been discussed as 

providing important advantages before the Drude description. 

- Important for the research graphene characteristics, such as conductivity 

and surface impedance have been presented, based on the Kubo formalism. 

- The Optical Theorem has been derived, adapted to the DR effect, i.e. for 

the incidence of the field of beam of charged particles. It establishes a relationship 

between the total scattering and absorption cross-sections, and the far-field angular 

pattern in certain complex-valued direction. 

- The Lasing Eigenvalue Problem statement for the open resonators 

equipped with active regions filled in with a gain material, has been explained. 

The presented reference data are used below and in publications [A1-A25]. 
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CHAPTER 2 DIFFRACTION RADIATION OF A BEAM OF PARTICLES 

MOVING NEAR DIELECTRIC NANOWIRES 

 

In this section, the DR-caused scattering and absorption characteristics in the 

visible range are investigated for a single circular dielectric nanowire and dimer of twin 

circular dielectric nanowires, excited by a modulated electron beam.  Research method 

is based on use of semi-analytical technique, which exploits the Fourier expansions in 

the local coordinates of each wire and the addition theorems for the cylindrical 

functions. As a result, single dielectric wire's resonance DR fields are investigated and 

identified as linear combinations of two degenerate modes of a circular cavity. For the 

dimer, the modes are the supermodes, built on the natural modes of each of the twin 

dielectric cavities combined together according to the two-fold symmetry. The results of 

chapter 2 have been published in works [A5, A6, A18-21, A25]. 

 

2.1 Scattering problem formulation for finite number of circular wires 

 

As far as all considered problems involve the incident field in the form of the 

modulated electron beam field and the circular cylinder scatterers, this section is 

devoted to the introduction of the generic DR problem formulation for the finite number 

of circular dielectric nanowires.  

We investigate the problem of the electron beam field scattering from M circular 

identical dielectric nanowires with radius a, located in the free space (i.e., in vacuum or 

air) as it is shown in Fig. 2.1. Let us denote the internal region of the p-th wire as region 

(1.p), and the external region to all wires or the enclosing medium as region (2). It 

should be noted that the wires located under the beam trajectory are numbered as 

11,...,p M= , meanwhile the wires located above the beam trajectory are numbered as 

1 1,...,p M M= + . We introduce Cartesian and polar coordinates: global one with the 

origin on the first wire axis, ( , )r x y=  and ( , )r r = , that as cos , sinx r y r = =  and 
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2 2 , arctan( / )r x y x y= + = , and M local ones with origins at each wire axis. Besides, 

we assume that the time dependence of the field has the form 
i te −

, where   is the 

cyclic frequency. The dielectric constant of the nanowires is equal to ' "i  = + , and 

all materials are non-magnetic. Then the refractive index of the wire material is equal to 

 = . We consider the diffraction radiation accompanying the uniform motion of a 

flat 2-D electron beam in the approximation of the given current, as it has been 

introduced in section 1.2. 

 

 

 

Fig. 2.1 Cross-sectional geometry of a flat zero-thickness electron beam moving near M 

identical circular dielectric nanowires 

 

As mentioned before, if we assume the electron beam velocity to be constant, 

then the DR problem can be viewed as a classical wave-scattering boundary value 

problem, where the incident field is the function (1.2). Then, the DR field has to satisfy 
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the following conditions: 

1. The Helmholtz equation with coefficient intk k=  in internal domain, (1.p), 

where p=1,…M, and /extk k c= =  in the external domain (2), 

 

2 (int, )

int,( ) ( , ) 0ext

extk H r  + = ,                                         (2.1) 

 

2. The boundary conditions on the surface (on the contour) of each wire, which 

are the continuity conditions for the tangential components of the EM field at r a=  and 

0 2   , 

 

int 0( , ) ( , ) ( , )ext

z z p z pH a H a H a  = + ,                                  (2.2a) 

int 0( , ) ( , ) ( , )extE a E a E a    = +  or 
int 0( , ) ( , ) ( , )ext

z z z

r a r a r a

H r H r H r

r r r

  


= = =

  
= +

  
,(2.2b) 

 

Note that from Maxwell's equations it follows that the electric and magnetic field 

components are connected as in (1.7)  

3. The condition for the local power finiteness, 

 

( )
2

2 2
2

0'
S R

E Z H rdrd −



+   ,                                         (2.3) 

 

where 
0 0 0/Z  = is the free-space impedance. 

4. The Sommerfeld radiation condition at infinity (outgoing wave behavior), 

 

  ( , )ext

zH r  ~ 
2

( )ikre
i kr




  at r →.                           (2.4) 

 

where the function ( )  of one variable (the azimuth coordinate  ) is called the 
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angular scattering pattern in the far zone. 

It can be proved that conditions (2.2) - (2.4) guarantee the uniqueness of the 

solution, if only " 0  , that is, the wire consists of a lossy ( " 0)   or passive ( " 0) =  

material. This follows from the Poynting Complex Theorem: if we assume the opposite 

(that there are two different ( )scH r  for the same 0( )H r , then this theorem leads to an 

expression with incompatible signs on the right and left hand sides. 

 

2.2 Casting the problem to the Fredholm 2-nd kind matrix equation 

 

To reduce the DR problem to a well-conditioned algebraic equation, we represent 

the total magnetic field as follows (here and further, the index z is omitted): 

 

 

   

( )

0 2

1

, 1. : , 1...

, 2 : \ 1.

int p

p p
tot

M
ext

p

H r p r a p M

H
H H r p

=

   =


= 
+ 



  ,                          (2.5) 

 

The magnetic field in domains (1.p ) and (2) is represented as ( 1...p M= ) 

 

 ( ) ( )( , ) ( ) , ( , ) 1.pinint p p

n n p

n

H r y J k r e r p


  


=−

=  ,     Internal            (2.6) 

 ( ) (1)

1...

( , ) ( ) , ( , ) 2pinext p

n n p

p M n

H r z H kr e r


 


= =−

=   ,    External            (2.7) 

 

where ( ) ( ),p p

n ny z   are unknown coefficients, (1)( )nH  and ( )nJ   are the first-kind Hankel 

and the Bessel functions, respectively. Note that the series (2.6) and (2.7) satisfy the 

Helmholtz equations (2.1), the condition of the local power finiteness (2.3), and the 

radiation condition (2.4). To determine the unknown expansion coefficients, these series 

are substituted into the boundary conditions (2.2) at the contours of the wires, and the 
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addition theorems for the Bessel and Hankel functions are used [159]. 

For several nanowires, we use the Graf’s theorem (Fig. 2.2) as follows: 

 

( ) ( ) ( ) ,iv in

v p n j v n pj j pj

n

Z kr e J kr Z kL e r L 


+

=−

=  ,                          (2.8) 

 

 
 

Fig. 2.2 Graf’s theorem explanation geometry 

 

Here, vZ   is arbitrary cylindrical function.  In our case, as it shown in Fig. 2.1, 

taking into consideration the correspondent angles, pj jp  = − , j pj   = + − , and 

pj p  = − , equation (2.8) takes the following form: 

 

( )(1) (1)( ) ( ) ( ) , , 1,2...j pj pim i m n in

m j n m pj n p p pj

n

H kr e H kL J kr e e r L j p M
  


−

−

=−

=   = ,     (2.9) 

 

In the near and far field zone, respectively, this yields 

 

( ) ( ) ( )(1) (1)( ( )) ( ) ( ( )) , ( )j pj pim P i m n in P

m j n m pj n p p pj

n

H kr P e H kr J kr P e e r P L
  


−

−

=−

=  ,      (2.10) 

( ) ( ) ( )(1) (1)( ( )) ( ) ( ( )) , ( )j pj pim P i m n in P

m j n m pj n p p pj

n

H kr P e J kr H kr P e e r P L
  


−

−

=−

=  ,  (2.11) 
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Further, we expand the incident field, i.e. the field of the modulated electron 

beam (1.2) in the Fourier series in each of the local polar coordinates, 

 

( ) /0

1

1
( , ) ( ) , 1,...,cp cp p

m

q y h ikx imm

p p m p

m

H r A e e i J kr e p M
 

 


+
−

=−

 −
= − = 

 
 ,   (2.12) 

( ) /0

1

1
( , ) ( ) , 1,...,cp cp p

m

q y h ikx imm

p p m p

m

H r A e e i J kr e p M M
 

 


+
− −

=−

 +
= = + 

 
 ,   (2.13) 

 

Using the boundary conditions (2.2a) and (2.2b) with the Graf theorem (2.9), and 

after the exclusion of all coefficients ( )p

ny , we obtain a block type (M x M) infinite-

matrix equations for the remaining coefficients. Omitting the superscript of the Hankel 

function and using the prime to mark the differentiation in argument, we get  

 

( )
( )( ) ( )

1

( ) ,pj

pM
i n mp jm m

m n n m n pj

j nm m m m
j p

V F
x x w H kL e

w D w D


+

−

−

= =−


+ =                     (2.14) 

 

where  ( ) ( )p p

n n nx z w=  , 
0 0( 1)n

n nw w = − , 
0 !(2 / ) ,n

nw n ka =  

 

1 ( ) ( ) ( ) ( )m m m m mV J ka J k a J ka J k a  −  = − ,                                  (2.15) 

1 ( ) ( ) ( ) ( )m m m m mD H ka J k a H ka J k a  −  = − ,                        (2.16) 

( ) ( ) 1 ( )( ) ( ) ( ) ( ) ,p p p

m m m m mF f ka J k a J k a f ka   −  = −                         (2.17) 

 

where, according to (2.12), the following expressions are established: 

 

( ) /

1( )

( ) /

1

( )(1 ) , 1,...,

( )(1 ) , 1,...,

p p

p p

q y h ikx m m m

mp

m q y h ikx m m m

m

Ae e i J ka p M
f

Ae e i J ka p M M





 

 

− −

− − −

− − =
= 

+ = +

 ,    (2.18) 
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( ) /

1( )

( ) /

1

( )(1 ) , 1,...,

( )(1 ) , 1,...,

p p

p p

q y h ikx m m m

mp

m q y h ikx m m m

m

Ae e i kJ ka p M
f

Ae e i kJ ka p M M





 

 

+ −

− − −

 − − =
 = 

 + = +

.  (2.19) 

 

 

 As can be verified, the obtained equation (2.14) is of the Fredholm second kind.  

 

2.3 Single dielectric nanowire: resonances on whispering gallery modes 

 

In this section, the DR from the modulated beam of electrons flowing near a 

single circular dielectric wire is considered. It can be expected that a high refractive 

index nanowire behaves as an open resonator, thanks to which the radiated power can 

be enhanced near the natural-mode wavelengths. 

 

2.3.1 Basic equations 

 

The cross-sectional geometry and notations of the studied single-wire DR 

problem is shown in Fig. 1.4 (b). The circular shape of the wire boundary suggests the 

use of the method of separation of variables. This means we expand the field functions 

in each domain in the Fourier series in the angular coordinate  . In particular, if y h , 

then the beam field (1.2) can be presented in the form of generalized plane wave (1.14), 

 

cos( )( )in qh ikr

zH r A e e   − −= − ,                                            (2.20) 

 

where 0 / 2A c=  and the complex incidence angle   is defined via (1.13). Then, 

taking into account the stand-alone wire configuration (M1=1), we simplify (2.12) as 

 

0( ) ( )(1 )qh m m m im

z m

m

H r A e i J kr e   
+

− −

=−

= − − ,                        (2.21)  
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The scattered field is expanded as  

 

1

(1)

( ),
( )

( ),

m msc im

z

m m m

a J k r r a
H r e

b H kr r a


+

=−

 
=  

 
 ,                             (2.22) 

 

where ,m ma b  are unknown coefficients, which are found using the conditions (2.1)-

(2.4). Note that, if M = M1 = 1, then the general matrix equation (2.14), turns into direct 

formulas, because the second term in the left-hand part vanishes. Thus, we obtain 

 

 ( )
1

( ) ' ( ) ( ) ' ( )m m m m m ma f ka H ka H ka f ka D
−

= − ,                     (2.23) 

( )
11( ) ' ( ) ( ) ' ( )m m m m m mb f ka J k a J k a f ka D  

−− = −  ,                (2.24) 

( )(1 ) , ( )(1 )qh m m m qh m m m

m m m mf A e i J ka f A e i J ka     − − − − = − − = − − ,       (2.25) 

1( ) ' ( ) ' ( ) ( )m m m m mD J k a H ka J k a H ka  −= − ,                          (2.26) 

 

Here, characteristic equations of the circular dielectric wire natural modes are 

 

( ) 0, 0, 1, 2,...mD k m= =    ,                                    (2.27) 

 

As known, they may have complex solutions, mnk , which form a discrete set with 

negative imaginary parts. These are complex wavenumbers of the natural modes, 

usually denoted as ,m nH , where 0,1,...m =  and 1,2,...n = . 

 

2.3.2 Numerical results: resonances on the nanowire modes 

 

Using the analytical expressions (2.21) – (2.24), we have studied the DR 

characteristics for the scatterer shaped as a circular dielectric wire. Note that the series 
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in (2.21) and (2.22) should be truncated to finite order, 
trN  [41]. It can be shown that D 

correct digits in the series are provided by the value of / 1trN ka D = + +  or larger. 

The plots in Fig. 2.3 demonstrate the dependences of the DR-caused normalized TSCS 

on the modulation wavelength in the visible range, for the wire with the radius 50 nm, 

relative dielectric constant 12 =  (silicon), the separation distance h = 10 nm, and 

several values of the relative beam velocity  .  As one can see, due to rather high optical 

contrast of silicon, even such a tiny wire behaves as an open nanocavity. 

Indeed, for all values of the relative beam velocity    the spectra of TSCS display 

three distinctive peaks in the visible and ultra-violet ranges. Their wavelengths positions 

at 464 nm, 306 nm, and 225 nm do not depend on the relative beam velocity  .  

 

 

 

Fig. 2.3 Normalized TSCS of the 50-nm in radius lossless silicon nanowire         

( 12 = ) versus the wavelength in the visible range, for several values of the electrons’ 

relative velocity  .  Note the resonances on the wire modes 
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Fig. 2.4 Complex eigenvalues of the lossless circular silicon nanowire in the visible range 

 

To clarify the nature of these peaks of TSCS, we have calculated the complex 

eigenvalues of the dielectric nanowire, as the roots of characteristic equation (2.26). 

They are presented in Fig. 2.4. There are four modes which have their wavelengths 

between 150 nm and 900 nm. The most “blue” of them, H21, has the largest Q-factor. 

The mode denoted XH1 corresponds to the so-called external mode of a circular 

dielectric cylinder, the existence of which was revealed, for instance, in Dettmann et al. 

[118]. They have very low Q-factors and do not produce any distinctive peaks in the 

spectra of TSCS and ACS. Other internal modes with high Q-factors are found in the 

deep ultraviolet range below 200 nm. The near field patterns of the internal modes with 

complex eigenvalues are presented in Fig. 2.5. 

The panels of Figs. 2.6 show the in-resonance near field patterns for the same 

dielectric nanowire as in Fig. 1.4( b) and two values of   One can clearly see the 

straight trajectory of the beam at the distance h = 10 nm above the wire. The lowest 

resonating mode, in frequency, is the H01 mode at 464 nm that is certified by the single 

bright spot near to wire’s center. 
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471.88 42.26i = + , nm 199.42 9.8i = + , nm 297.66 19.71i = +  , nm 

   

156.84 6.78i = +  , nm 224.21 5.73i = + , nm 177.37 0.97i = + , nm 

 

Fig. 2.5 Near field patterns of the lowest-order internal eigenmodes of 50-nm in radius 

silicon nanowire with the wavelengths between 150 nm and 900 nm 

 

The next, in frequency, is the dipole mode H11 at 306 nm showing two bright 

spots. The most high-frequency peak at 225 nm is on the quadrupole mode H21. This 

field pattern is well visible for the relativistic beam DR, as at 1 1−   the beam field 

(1.2) is very close to a plane wave, albeit with a jump at the beam trajectory. 

Here, it is necessary to remind that if 0   the incident field (1.2) is not 

symmetric with respect to the wire section by the x-axis.  

Indeed, for instance, the field (2.22) inside the wire can be rewritten as 

 

1

1

0

2
( ) ( ) cos sin ,

qh
sc m

z m m m m

m

A e
H r i J k r D B m iB m

ka


 



− 
− + −

=

 = − +              (2.28) 

 

where 

( ) (1 ) (1 )m m m

mB     − = −  −  .                                (2.29) 

 

H01 H02 H11 

H12 H21 H31 
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(a)  (b)  

    

(c) (d) 

 
 

 
 

(e) (f) 

 

Fig. 2.6 Total near magnetic field patterns (left panels) and normalized far-field scattering 

patterns (right panels) of the lossless silicon nanowire of the radius a = 50 nm and  0.9 =  

(a,c,e), 0.5 =  (b,d,f) in the resonances on the modes H01 for 464 =  nm (a,b), H11 at 

306 =  nm (c,d) and H21 at 225 =  nm (e,f) 

 

Therefore, at the resonance wavelengths, the beam field excites not a single one 

of two degenerate modes Hm,n (m > 0) but the both, and the contribution of the anti-

symmetric with respect to y = 0 component gets larger with smaller   This leads to the 

overlap of two modal patterns so that the resulting field portrait (in absolute value) 
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resembles a continuous ring. The reason is that if 1   (non-relativistic beam) then 

2( ) (2 / ) 1 ( )m

mB O    =  +  . Hence the inner field pattern takes the form of the 

rotating wave, ( )(cos sin ) ( )
m

J k r m i m O   − + , instead of the standing-wave    

( )cos
m

J k r m  , observed in the plane wave scattering. Note that this is not true for the 

resonance on the H01 mode (Fig. 2.6 a, b) because in this case the contribution of anti-

symmetric field component is zero. 

This feature is also well visible in the far zone, where the normalized by the 

maximum value angular scattering patterns are shown in Figs. 2.6 at the same 

wavelengths. If 1  , then the in-resonance radiation becomes omnidirectional.  

 

2.4 Two dielectric nanowires as a model of beam position sensor 

 

This section explores the opportunity of using the Photonic Molecule (PM) 

configuration and its DR characteristics for obtaining the information on the beam 

position shift h. Nanoscale size of such sensor antennas introduces negligible distortion 

to the beam energy characteristics, which can be considered as fixed. This makes 

possible the analysis of the beam position effect on DR in the same way as within the 

traditional electromagnetic theory, i.e. as the scattering of the given electromagnetic-

wave field of the moving beam by the scatterers of given shapes and material properties. 

The latter parameters can be manipulated to optimize the BPM performance.  

PMs are attracting the attention of researchers since the late 1990s as 

configurations occupying intermediate place between “photonic crystals” and “photonic 

atoms,” or stand-alone dielectric particles [119-124]. PMs are configured as finite 

number of similar or identical elements, usually having certain symmetry, say, a linear 

“chain” of them or a cyclic “necklace.” They confine light and enable its efficient 

manipulation at the micrometer length scale due to the strong optical coupling. This is 

an alternative to the manipulation of light in the photonic crystals which are the media 

with periodic variation of refractive index.  
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The simplest PM contains two identical spherical or circular-wire (Fig. 2.7) 

elements and hence it has two-fold symmetry. This circumstance leads to the 

appearance of four orthogonal families of natural modes of such a twin PM [121]. Here, 

each mode of PM is built on a certain mode of individual dielectric cavity, the cavities 

being optically coupled together in one of the four possible ways. Therefore, the 

coupled-cavity modes are called “supermodes.” Each family’s supermodes possess 

either symmetry or anti-symmetry of each field component with respect to each 

symmetry plane. This is usually expressed via the terms “bonding” and “anti-bonding” 

or “even” and “odd,” respectively. 

Besides, the symmetry and anti-symmetry can be understood via the placement of 

the virtual perfect electrically conducting (PEC) or perfect magnetically conducting 

(PMC) wall along the corresponding symmetry plane. Under an external illumination, 

say, with a plane wave, PM supermodes can be either “bright” ones, that is, display 

resonances in the scattering and absorption, or remain “dark.” The latter happens if the 

incident field symmetry is different from the symmetry of the supermode natural field. 

 

2.4.1 Problem formulation and basic equations 

 

Consider a PM formed by two identical circular dielectric nanowires (#1 and #2) 

separated by the distance L between their axes, with the same radius a and refractive 

index  =  (ε being the relative dielectric permittivity). We assume that electron 

beam (1.1) moves between the wires in parallel to the x-axis at the distance h from it. 

Hence, the beam separation from the lower (upper) wire axis is  / 2d L h=  . The 

Cartesian and the local and global polar coordinates are shown in Fig. 2.7.  

The formulation of the 2-D boundary-value problem for the unknown scattered 

field involves the Helmholtz equation off the wire contours of cross-section, the 

penetrable-boundary conditions at these contours, the Sommerfeld radiation condition at 

infinity, and the condition of the local power finiteness. These conditions, which were 

detailed discussed in section 2.2, guarantee the solution uniqueness. 
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Fig. 2.7 Cross-sectional geometry of an electron beam moving between a pair of 

identical circular nanowires, which form a photonic molecule  

 

The considered PM configuration has been studied in a number of publications, 

however, to the best of our knowledge, not with the electron-beam field (1.2) as a given 

excitation field. Here, the approximate numerical techniques like [125] and commercial 

FDTD-based codes [126] are important for engineering applications however not 

enough accurate if studying the fundamental wave effects such as sharp resonances. 

Therefore, we follow the semi-analytical technique first introduced by Twersky [78-81] 

and further improved in [121, 127, 128]. This technique exploits the circular shape of 

the boundaries of the wire cross-sections and combines the expansion of the field 

function in the azimuth Fourier series (in the local polar coordinates of each wire) with 

the addition theorems for the Bessel functions. It enables one to reduce the scattering 

problem to the infinite-matrix equation for the expansion coefficients. The important 

correction, introduced in [121, 127, 128], is the rescaling of that matrix equation to cast 

it to the Fredholm second-kind form. This correction guarantees the convergence of the 

numerical solution, in the mathematical sense. 

Guided by these considerations, we expand the field in terms of the azimuth-
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coordinate Fourier series inside each wire, (1. ), 1,2r p p =  

 

int( ) ( )( , ) ( )exp( ), , 1,2p p

p p m m p p p

m

H r y J k r im r a p  


=−

=  =                  (2.31) 

 

In the presence of the twin scatterers, the total field in the external domain, 

(2)r  , has the form of the sum,  

 

0ext scH H H= + ,                                                       (2.32) 

( )

1,2

( , ) ( )exp( ), ,sc p

m m p p p

p m

H r z H kr im r a 
+

= =−

=                            (2.33) 

 

where ( )mJ  and ( )mH   are the Bessel and Hankel first-kind functions, and 

( , ), 1,2p pr p =  are the local polar coordinates of the wires. 

One of the boundary conditions requests the total field function 
totH  to be 

continuous across each wire boundaries, 1,2r a= . On introducing the complex angles of 

incidence of the wave (1.2) below and above the beam trajectory, 
1,2 , such that 

 

1,2 1,2cos 1/ , sin /i    = =  ,                                          (2.34) 

 

and using the Jacobi-Anger formula in the complex domain, we can expand the incident 

field in terms of the azimuth series in the local coordinates of each wire as in [5], 

 

1,2 1 1 1,2cos( )0 ( /2 ) ( /2 )

1,2 1,2 1,2

1
( , ) ( )

m

ikr imq L h q L h m

m

m

H r A e e A e i J kr e
  

  


+
−−  − 

=−

 
= =  

 
 ,(2.35) 

 

The expressions (2.31) and (2.33) satisfy the Helmholtz equation, the local power 
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finiteness condition, and the radiation condition.  

For the twin PM configuration, the matrix equation (2.14) can be simplified to 

two coupled infinite-matrix equations as presented below, 

 

(1,2)
(1,2) (2,1) ( ) ( ) ,n mm m
m n n m n

nm m m m

V F
x x w i H kL

w D w D

+
−

−

=−

+  = −                              (2.36) 

 

where all notations correspond to Fig.2.7 and can be found in section 2.2. 

Inspection of (2.36) shows that the diagonal matrix elements of its first (second) 

block characterize the scattering by, respectively, the first (second) wire in the free 

space, and the off-diagonal elements characterize the optical interaction. Note that the 

off-diagonal elements are not zero and hence the interaction is always present and 

decays rather slowly, as 1/2[1/ ( ) ]O kL  if kL →  .  

The obtained set (2.36) is a Fredholm second kind infinite-matrix equation (see 

[121, 127, 128]) due to the fact that 
2

(1,2)

, mnm n
A

+

=−
   and 

2
(1,2)

mm
B

+

=−
  , where 

the matrix elements, 
(1,2)

mnA , and the right-hand part elements,  
(1,2)

mB ,  follow from 

(2.36). Then the Fredholm theorems guarantee that its numerical solution (after 

truncation to finite order N) converges to the exact solution. To obtain 5 correct digits in 

the near field, one has to take / 5trN k a  +  (however, more if the airgap 2L a−  

gets much smaller than a).  

 

2.4.2 Scattering and absorption cross-sections 

 

On using the large-argument asymptotic expressions for the Hankel functions, the 

scattered field in the far zone ( )r →  takes the form of cylindrical wave, 

1/2( , ) (2 / ) ( )exp( )scH r i kr ikr  =  , where the far-field angular scattering pattern 

depends on the coefficients ( ) ( )p p

n n nx z w=  , and 
0 0( 1)n

n nw w = − , 
0 !(2 / ) ,n

nw n ka =  
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(1,2)1
1 2 1,2 2

( ) ( ) ( ), ( ) exp( sin ) ( ) exp( ),m

n m

m

ikL i w z im     
+

=−

 =  +   = −       (2.37) 

 

Then the total scattering cross-section is found as (1.8). If the dielectric wires are 

lossy, then, besides the scattering, a part of the power of the incident field is absorbed in 

PM. This is characterized by the absorption cross-section (ACS), which is found from 

the integration of the normal component of the time-averaged Poynting vector over the 

contours of the wires. This leads to the following equation: 

 

( )(1) 2 (2) 2

2 2 2

2
| | | | Im ( ) ( * )

| |
abs m m m m

m

a
y y J k a J k a

A


   

 



=−

 = +
  ,              (2.38) 

 

where * means the complex conjugation. The unknowns 
(1,2)

my are as follows 

 

(1,2) (1,2) ( ) (2,1) (1,2)( ) ( ) ( ) ( ) ( )n m

m n m m n n m n m

n

y J k a z H ka i z J ka H kL f
+

−

−

=−

= + +       (2.39) 

 

Thus, on solving the matrix equation (2.36) truncated to finite order 
trN , one can 

calculate the scattering and absorption cross-sections and the near and far field patterns. 

Note that the accuracy of the calculation of the near field and hence the ACS is the same 

as accuracy of solving (2.36). However, the accuracy of calculation of the far-field 

angular pattern (2.37) and the TSCS (1.8) is approximately by an order of magnitude 

better because of the presence of the Bessel functions, which decay exponentially with n 

if n > ka. 

 

2.4.3 Modified Optical Theorem 

 

The sum of SCS and ACS is called the extinction cross-section [19]. Thanks to 
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the Complex Poynting Theorem applied to the total field function and its complex 

conjugate, the extinction of the considered PM scatterer can be connected to the far-

field values in certain complex directions.  

Here, unlike the single-wire configuration of section 2.3, we have the scatterers 

both above and below the beam trajectory. Therefore, it is necessary to introduce two 

complex-valued angles of incidence of the wave (1.2) in the upper and lower half-

spaces, 
1,2 , respectively - see (2.34). 

Then, the real part of the expression, which follows from the Complex Poynting 

Theorem reduces (see section 1.4) modifies to 

 

         1 1 2 2

4
Re ( ) ( )sc abs

kA
   


+ = −  +  ,                               (2.40) 

 

or, with account of (2.37),  

 

    /2 (1) (2)4 1 1
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m

e i w z e z e
kA

 
 

  
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− −

=−

    − +
+ = − − +    

     
 .  (2.41) 

 

The obtained expression plays the role of the Optical Theorem (OT) for the 

diffraction radiation excited by the electron beam (1.1) flowing between the wires of a 

twin-wire PM. If the TSCS value has been found, then the ACS value can be 

determined from (2.41) instead of (2.38). Comparison of two values of ACS, found 

from (2.38) and (2.41), can be viewed as a partial validation of the solution correctness. 

Still, their coincidence is only a necessary condition of correctness however not a 

sufficient one. The sufficient test is provided by the verification of the fulfillment of the 

boundary conditions. 

In our work, the Optical Theorem (OT) has been satisfied at the level of machine 

precision and the boundary conditions have been satisfied with the same accuracy as the 
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solution of the matrix equation (2.36), controlled by the truncation order 
trN . Additional 

validation has been provided by the fact that if the relative dielectric permittivity of the 

wire #2 is set to be 1, then the computed TSCS and ACS are the same as for a single 

dielectric wire excited by the beam (1.1), where the full-wave analytical solution is 

available [8], see also section 2.2. 

 

2.4.4 Numerical results: resonances on the dimer supermodes 

 

In computations, we have been looking for the features of the DR associated with 

twin-cavity PM configuration that can be used for the detection of the shift of the beam 

trajectory from central position between the dielectric wires. We are also interested in 

seeing the effect of the relative beam velocity,  , on the DR. 

Here, we remind that the modes of twin-wire PM (Fig. 2.6) are “supermodes” 

built on the natural modes of each separate circular wire and optically coupled in four 

possible ways because of the two-fold symmetry. Therefore, they are classified usually 

as “x-even, y-even” (EE), “x-even, y-odd” (EO), “x-odd, y-even” (OE), and “x-odd, y-

odd” (OO). If the electron beam flows along the x-axis, i.e. exactly in the middle 

between the dielectric wires, so that 0h = , then its field (1.2) is anti-symmetric function 

of y with respect to 0y = . Such incident field is able to excite only the resonances on the 

modes of the (EO) and (OO) families, while the supermodes of the other two families, 

(EE) and (OE), remain “dark.” The latter-mode resonances can be expected to start 

shining if the beam trajectory shifts from the central position, i.e. if 0h  . This effect 

can potentially serve as a marker for the beam position monitoring. 

We start our numerical experiments from the PM made of two sub-wavelength 

wires with a = 50 nm, and 12 ( 3.4641) = = . Such a material is similar to silicon or 

GaAs that have very small losses in the visible range, so that, at first, we neglect them. 

The airgap between the wires is 20 nm. Fig. 2.8 demonstrates the dependences of the 

normalized total scattering cross-section (TSCS) on the beam modulation wavelength, 
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for one and two thin sub-wavelength nanowires with the beam shift 0h =  nm and 

several values of the beam velocity  . As already mentioned, stand-alone circular 

dielectric nanowire is a convenient reference scatterer, for which the DR problem can be 

solved analytically similarly to the plane-wave scattering - see section 2.3 for details. 

For all β, the plots of TSCS show three distinctive peaks at λ = 225 nm, 306 nm, 

and 464 nm with smooth shapes. Intensity of DR decays if   gets smaller, i.e. for a 

non-relativistic beam, because its field (1.2) becomes compressed to the beam 

trajectory. The resonance peaks are broad that tells that the corresponding natural modes 

have small Q-factors. This is apparently the reason that no splitting into doublets of the 

(EO) and (OO) supermodes is visible, so that each peak is a collective resonance on 

both of them. 

 

 

 

Fig. 2.8 Normalized TSCS of the 50-nm in radius one (dashed curve) and two silicon 

nanowires versus the wavelength in the visible range, for several values of the electron 

relative velocity β. The beam flows along the x-axis ( 0h = ) 

 

Moreover, if the beam trajectory is shifted from the x-axis, these peaks do not 

split further, again because of the low Q-factors of the (EE) and (OE) supermodes, 

which are “dark” if 0h =  but should become “bright” if 0h  . This gives an idea that 
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too thin dielectric wires, even if made from nigh refractive index material, are not a 

promising configuration for the beam-diagnostics applications. 

Therefore, in Fig. 2.9 (a) we demonstrate the wavelength scans of TSCS for much 

thicker silicon nanowire PM with a = 200 nm and the same airgap of 20 nm. As one can 

see, in this case there are multiple resonances within the visible range (i.e. for λ from 

300 nm to 800 nm). A zoom of the part of the spectrum near to 360 nm is shown in Fig. 

2.9 (b) for the beam velocity 0.5 =  and two beam shifts,  and 5h =  nm. Now, the 

splitting of the resonance peaks is clearly visible. 

 

 

(a)                                                                      (b) 

 

Fig. 2.9 The same as in Fig. 2.8 however for one (dashed curves) and two (solid curves) 

silicon nanowires of the 200-nm radius (a) and a zoom of the TSCS spectra for  in the 

wavelengths range from 350 nm to 370 nm (b) 

 

According to [121], the quartets of WG supermodes actually form two tight 

doublets: one of the (OO) and (EO) families of modes and another of the (EO) and (EE) 

families. Close inspection shows that the complex poles underlying the higher-Q peak 

of TSCS for 0h =  at the wavelengths of 359.85 nm in Fig. 2.9 (b), correspond to the 

supermode 8,1

OOH  and apparently not resolved sister-mode 8,1

EOH . Similarly to that, a 

broader peak at 361.17 nm corresponds to the lower-Q supermode 7,2

OOH  and its not 
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resolved sister-mode 7,2

EOH . This interpretation is fully supported by the in-resonance 

normalized far-field angular patterns and the near-field patterns shown in Figs. 2.10 and 

2.11, respectively, for the symmetric excitation of twin-wire PM ( 0h = ). The beam 

trajectory is indicated by the dashed line. In each peak, the supermodes of the (OO) 

family dominate in the total field.  

 

 

 

(a) 

 
 

 

 

(b) 

 
 

  

Fig. 2.10 Symmetric beam excitation. In-resonances normalized far-field scattering 

patterns of twin silicon nanowires of the radius a = 200 nm, L = 120 nm,     0h =  and 

β=0.5 at λ = 359.85 nm (a) and 361.17 nm (b). 

 

 

 

(a) 

8,1

OOH  

 

 

 

(b) 

7,2

OOH  

  

  

Fig. 2.11 Symmetric beam excitation. In-resonances near field patterns of twin silicon 

nanowires of the same parameters as in Fig.2.10  

 

What is most important from the viewpoint of applications in BPM design, if the 

beam trajectory is shifted from the x-axis, then new additional peaks of TSCS appear. 

This is visible on the zoomed spectrum shown in Fig. 2.9 (b) for h = 5 nm: an additional 

sharper peak starts shining at 360.76 nm and a broad peak appears at 365.5 nm. The 
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corresponding in-resonance far-field angular patterns and the total near-field patterns 

are depicted in Fig. 2.12 and Fig. 2.13, respectively.  

 

   

(a) (b) (c) 

 

Fig. 2.12 Non-symmetric beam excitation. The same as in Fig. 2.10 for a = 200 nm, L 

= 420 nm, h = 5 nm, β= 0.5 at λ = 359.85 nm (a), 360.76 nm (b), and 361.17 nm (c) 

 

   

(a) (b) (c) 

 

Fig. 2.13 Non-symmetric beam excitation. In-resonances near field patterns of twin 

silicon nanowires of the same parameters as in Fig.2.12 

 

Note that the pattern in Fig. 2.12 (a) is very close to the pattern in Fig. 2.10 (a) 

and that in Fig. 2.13 (a) – to the one in Fig. 2.11 (a). The same is visible for the patterns 

shown on the panels (c) of Fig. 2.12 and Fig. 2.13 and panels (b) of Fig. 2.10 and Fig. 

2.11, respectively. This leads to the conclusion that the supermodes with the fields, anti-

symmetric with respect to y, are weakly sensitive to the shift h of the beam trajectory. 

The explanation of this property can be seen in the fact that these modes have zero 
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values of their H-fields on the x-axis and hence it is much better compatible with the 

incident field (1.2) than of the y–even mode families. 

In contrast, the patterns shown in Fig. 2.12 (b) and Fig. 2.13 (b) correspond to the 

new resonance at 360.76 nm, which is absent if 0h = . They demonstrate that this is the 

resonance on the WG supermode 8,1

EOH , with some admixture of its not resolved sister-

mode 8,1

EEH , which has smaller contribution. Similar conclusions can be reached for the 

broad peak at 365.5 nm, not existent at 0h = . 

To strengthen these conclusions, we have computed the TSCS spectra for the 

symmetric and shifted beam excitation of the twin-wire PM with even larger however 

still nanoscale silicon resonators, of the 400-nm radius. The corresponding plots are 

presented in Fig. 2.14 (a) for 0.5 =  and the shift values h = 0 and h = 5 nm in the 

range of wavelengths between 400 nm and 500 nm, and a zoom around 423 nm is 

shown in Fig. 2.14 (b). Like in the previous example, the TSCS of the PM excited by 

symmetrically flowing beam demonstrates two resonance peaks, while the non-

symmetrically excited PM – four resonance peaks.  

 

 

(a) 

 

(b) 

 

Fig. 2.14 Normalized TSCS of PM on twin silicon nanowires of 400-nm radius with 

20-nm airgap versus the wavelength, for the electron relative velocity β = 0.5 and two 

values of the shift distance h (a) and its zoom (b) 
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As we could already see, reliable interpretation of the resonances is best achieved 

via visualizing the near-field patterns. The four in-resonance field patterns 

corresponding to the four peaks of TSCS in Fig. 2.14 (b) for the beam shifted by h = 5 

nm are presented in Fig. 2.15.  

They demonstrate convincingly the fields dominated by the higher-Q supermodes 

12,2

OOH  at 421.9 nm and 12,2

OEH  at 422.6 nm in the sharp peaks of TSCS, and the lower-Q 

supermodes 9,3

OOH  at 423.5 nm and 9,3

OEH  at 425.6 nm - in the broader peaks of TSCS. In 

each case, the pattern is slightly distorted by the presence of not fully resolved sister-

supermode of the x–even family. Here, similarly to the previous example with 200-nm 

in radius twin-wire PM, the appearance of the peaks on the y-even modes 12,2

OEH
 and 9,3

OEH  

can serve as a marker of the beam deviation from the center of the 20-nm airgap. 

 

 

  

(a) 12,2

OOH  (b) 12,2

OEH  

  

(c) 9,3

OOH  (d) 9,3

OEH  

 

Fig. 2.15 Non-symmetric excitation. In-resonances near field patterns of twin silicon 

nanowires of the radius a = 400 nm, L = 820 nm, s= 20 nm, h = 5 nm and β= 0.5 at λ 

= 421.88 (a), 422.58 (b), 423.47 (c) and 425.60 nm (d) 
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Next, we analyze in greater details the sharper peaks of TSCS in Fig. 2.14 (a), 

near to the wavelength of 415 nm. The corresponding zoom is shown in Fig. 2.16 for 

the shifted by 5 nm and not shifted trajectories of the electron beam with β = 0.5. 

Similarly to the previous analysis, the sharper peak on the 16,1

OOH  WG supermode at                 

λ = 415.1219 nm is present in both cases and keeps the same shape, and the other peak 

on the 16,1

OEH  supermode at 415.489 nm appears only if the beam trajectory is shifted.  

 

 
 

Fig. 2.16 Zoom of TSCS curves from Fig. 2.14(b) between λ = 415 - 415.6 nm 

 

  

(a) H16,1
OO (b) H16,1

OE 

 

Fig. 2.17 Non-symmetric excitation. In-resonances near field patterns of twin silicon 

nanowires of the radius a = 400 nm, L = 820 nm, s= 20 nm,  h = 5 nm and    β= 0.5 at 

λ = 415.1219 nm (a), 415.489 nm (b) 
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The WG supermode type identification is based on the visualization of the near 

field patterns in these two resonances, presented in Fig. 2.17. Thus, the resonances on 

the supermodes, which have only one field variation in radius, serve as even better 

marker of the beam trajectory deviation from the central (symmetrical) position, 

because of the higher Q-factors. 

So far, we have been discussing the numerical results computed with the lossless 

dielectric cavities. In order to obtain a vision of the role played by the losses, now we 

introduce small bulk material losses, Im , in the 400-nm in radius wires and compute 

the ACS as a function of the wavelength – see Fig. 2.18. The PM and the electron-beam 

parameters are taken the same as in Fig. 2.14 (b).  

 

 

 

Fig. 2.18 Normalized ACS of PM on twin silicon nanowires of 400-nm radius with 

20-nm airgap versus the wavelength, for the electron relative velocity β = 0.5 and two 

values of the shift distance h 

 

As one can see, the ACS spectra show the resonance peaks at the same 

wavelengths as on the plots of TSCS, which are not shown here because for so small 

bulk losses they overlap with the curves in Fig. 2.14 (b). The maximum value of the 
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absorption is achieved in the resonance on the most high-Q mode, 12,2

ooH , however it is 

still by the order of magnitude lower than the resonance scattering (compare with Fig. 

2.14 (b)). Similarly to the scattering, two additional peaks of absorption appear if the 

beam trajectory deviates from the airgap center, on the y-even modes 12,2

oeH
 and 9,3

oeH . If 

the bulk losses in the dielectric material are taken 10 times greater, 10-3 instead of 10-4, 

then the ACS curves also rise by approximately an order, except of the high-Q 

resonances where this rise is cancelled by the Q-factor, which in this case is inverse 

proportional to the bulk losses.  

 

Conclusions to Chapter 2 

 

In this section, the DR-caused scattering and absorption characteristics of a 

modulated beam of particles in the visible range have been considered.   For one wire 

we have used analytical solution obtained by the separation of variables. For twin wires 

configuration (also known as photonic molecule or dimer), a numerical-analytical 

method with guaranteed convergence has been developed and used. Implementing these 

reliable computational tools, resonances in the DR characteristics, such as scattering and 

absorption cross sections, have been investigated and discussed. According to the 

results of the performed research, it is possible to draw the following conclusions: 

- If one can neglect the action of the field on the electrons, then the EM field 

of a modulated 2-D beam takes form of a surface slow wave propagating along the 

beam trajectory. This wave induces the polarization and surface currents on the local 

obstacles and hence a radiation occurs even if the beam does not touch the obstacle. In 

fact, the wire plays the role of optical nanoantenna, which makes the beam of particles 

visible. As we have shown, a nanowire behaves as an open resonator, thanks to which 

the radiated power is enhanced near the natural-mode wavelengths.  

- For the single dielectric nanowire, unlike the more conventional plane-

wave scattering, the in-resonance fields (except of the H01 mode) are shaped as rotating 
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cylindrical waves. This happens because of three circumstances: (I) the beam field 

depends on y, and hence there are no “dark modes” of the wire that remain not excited 

because of orthogonal symmetry with respect to the incident wave, (II) the symmetric 

and the anti-symmetric natural modes of the wire remain degenerate, and (III) if 0 → , 

then the phase shift between these mode contributions approaches / 2 . 

- A PM formed by a pair of identical nanowires made of high refractive 

index dielectric material behaves as a composite optical open resonator, which supports 

quartets of supermodes built on the natural modes of each cavity, combined together 

according to the two-fold symmetry of this configuration. If the electron beam flows 

between the wires, the emerging DR is resonantly enhanced near each natural WG 

supermode wavelength. As we have found, if the beam trajectory shifts away from the 

central (i.e. symmetrical) position, then new peaks in the spectra of the scattering 

become visible. They appear due to the resonances on the formerly “dark” WG 

supermodes, which are absent in the symmetric beam excitation. This effect can be 

important for applications related to the design of novel optical-range BPMs. It is 

interesting to question the feasibility of experimental verification of the presented 

effects. Today the size of controllably manufactured subwavelength dielectric 

microcavities is measured in hundreds and dozens of nanometers. So, in principle, 

experimental verification is realistic. Besides, the DR a dielectric resonator with a fixed 

relative permittivity can be scaled up to larger sizes and wavelengths. For example, the 

curves presented in Figs. 2.13 to 2.16 for the wire radius 400 nm and the wavelengths of 

400 nm to 500 nm are equally valid for the wire radius 4 mm and the wavelengths of 4 

mm to 5 mm. 
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CHAPTER 3 DIFFRACTION RADIATION OF A BEAM OF PARTICLES 

MOVING NEAR SILVER NANOWIRES 

 

In this chapter, the DR-caused scattering and absorption characteristics in the 

visible range are numerically investigated for a stand-alone circular silver nanowire and 

twin circular silver nanowires and nanotubes. These configurations are investigated 

keeping in mind the BPM applications. The wavelength-dependent permittivity of silver 

is taken from the experimental data and shows negative real-part values. Thanks to this, 

sub-wavelength in radius silver nanowires are famous as nanoresonators due to the 

localized surface-plasmon (LSP) modes. Similar to Chapter 2, we use the field 

expansions in the azimuthal Fourier series and the addition theorems for the cylindrical 

functions. This enables us to solve one-wire problem analytically and reduce it to a 

Fredholm second kind infinite-matrix equation for silver-wire and silver-tube dimers. 

Here the Fredholm theorems guarantee convergence of numerical solutions. Truncating 

this matrix, we compute the near and far field patterns of the wires as optically coupled 

plasmonic resonators and analyze dependence of the near and far-field spectral 

characteristics on the wavelength and electron beam parameters. The materials of 

Chapter 3 are published in works [A3, A4, A6, A15-17, A22-24]. 

 

3.1 Single silver circular nanowire: resonances on the plasmon modes 

 

We study the DR characteristics of the charged particles beam (1.1) moving near 

a circular metal (silver) nanowire. All basic equations are similar to the dielectric single 

wire case presented in section 2.3, the difference being in the complex permittivity of 

the silver material. The complex-valued bulk dielectric permittivity of silver has been 

taken from the experimental paper of Johnson and Christy [93] and combined with a 

cubic spline interpolation as it was explained in section 1.3. Note that the plane-wave 

scattering from stand-alone and twin-wire plasmonic scatterers was extensively studied 

in the past [134-136], however, the DR effect has not been studied. In computations, the 
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associated series or matrix equations have been truncated at the number ±10 that well 

exceeds the maximum value of 1| |ka   − in the whole optical range and provides 4 and 

more correct digits. 

 

 

 

Fig. 3.1 Cross-sectional geometry of an electron beam moving near a stand-alone 

circular silver nanowire 

 

Note that the silver nanowire’s dielectric function varies between 0.93                                 

(at λ = 306 nm) and -40 in the visible range and that the losses are quite considerable, 

between 0.2 and 3.9 – see Fig.1.2. 

The plots in Fig. 3.2 demonstrate the dependences of the normalized TSCS and 

ACS on the modulation wavelength in the visible range, for the wire with the radius 50 

nm, the impact parameter h = 60 nm, and several values of the relative beam velocity β. 

For all β, the plots of TSCS show the maximum at λ = 347 nm preceded by the 

minimum at λ = 318 nm and the plots of ACS – the peak at λ = 343 nm. Note that ACS 

is quite comparable with TSCS, especially in the blue and violet parts of the spectrum. 

As expected, the wavelengths of the peak scattering and peak absorption are very 

close to the root of the “textbook” quasi-static equation, Re ( ) 1  = −   [19,95], found at          

λ = 338 nm [93]. This is a collective resonance caused by the infinite number                        

(m = 1,2,…) of the  transverse  LSP  modes of a  circular  wire with  negative  dielectric  
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(a) 

 

 

 

 

(b) 

   

 

Fig. 3.2 Normalized TSCS (a) and ACS (b) of the 50-nm silver nanowire versus the 

wavelength in the visible range, for several values of the electron relative velocity β 

 

function. This happens because, if / 0a  → , then the corresponding characteristic 

equation (2.27) takes form as 1 2 2( ) ( ) 1 ( )mD O m a   − − + + [95], which is asymptotically 

independent of the azimuth index m. The peaks of separate LSP resonances merge 

together because of the losses in silver. 

The minimum of TSCS (and to lesser extent of ACS) is typical for the plasmonic 

scatterers, see [27, 99, 129]. Its location in wavelength corresponds to the value, at 

which the dielectric function of silver, Re ( ) 1  = , comes near to 1. Here, the metal 

placed in the vacuum becomes optically transparent although still not invisible due to 
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non-zero absorption. According to experimental measurements [93], that happens at λ = 

308 nm, and the red shift of the minimum in Fig. 3.2 is the effect of the finite wire 

radius. As can be found after inspection of the works [127, 128, 130, 131], this 

“invisibility” effect is equally well observable in the scattering of light by finite and 

infinite arrays of circular silver nanowires. Potentially such optical transparency can be 

also useful in the design of beam velocity sensors, because the depth of the minimum 

depends of that velocity. 

 

 

 

Fig. 3.3 Complex eigenvalues of the silver nanowire in the visible range 

 

To clarify the nature of the peak of TSCS, we have calculated the complex 

eigenvalues of the silver nanowire using the rigorous characteristic equations (2.26). 

Here, Johnson and Christy data for ε(λ) cannot be used directly because they were 

measured for the real frequencies. To overcome this difficulty, we have used the 

modified “Drude + two Lorentzians” formula presented in [132] that provides 

reasonably good approximation of the measured data in the range between 200 nm and 

400 nm, and continued it to the complex frequencies. 

The results are presented in Fig. 3.3. As expected, for all m the complex eigen-

wavelengths are located close to each other between 330 nm and 360 nm and have 
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comparable imaginary parts of λ. Their Q-factors are between 5 and 15. They 

correspond to the LSP modes of the metal wire from P1 to P5. The notations X4 and X5 

correspond to the so-called secondary plasmon modes, the existence of which was 

apparently mentioned first time in [95]. They have comparable Q-factors however 

produce no separate peaks in the spectra of TSCS and ACS. The near field patterns of 

the plasmon modes P1 to P5 are presented in Fig. 3.4. 

 

   

P1 P2 P3 

   

                                          P4                      P5 

 

Fig. 3.4 Near field patterns of the lowest-order plasmon modes of silver nanowire with the 

wavelengths between 330 nm and 350 nm 

 

We have also computed the total near magnetic field patterns and the normalized 

DR far-field angular scattering patterns of the same silver nanowire excited by the beam 

of particles (1.1), at the fixed values of β and λ. As one can see in Fig. 3.5, at the 

resonance wavelengths the total field is dominated by the mentioned composition of 

many plasmon modes. Its bright spots are located near the surface of the nanowire and 

do not penetrate into it. This is explained by the surface nature of the plasmon modes. 



84  

 

 

 

 

(a) (b) 

 

Fig. 3.5 Near magnetic field patterns (left) and normalized far-field scattering pattern 

(right) of the silver nanowire of the radius a = 50 nm for and β =0.8 (a),          β =0.5  

(b) in the collective LSP resonance at λ = 347 nm 

 

At the “invisibility wavelength” of λ = 318 nm, the total field in the near zone 

shows the beam field (1.2) only slightly perturbed by the wire – see Fig. 3.6  

 

 

 

 

 

(a) (b) 

 

Fig. 3.6 The same as in Fig. 3.5 however for the λ = 318 nm in the TSCS minimum 

 

The almost omnidirectional shape of the far-field DR patterns can be explained 

by the comparable contribution of the symmetric and anti-symmetric along the y-axis 

field parts. Its maximum is always oriented in the normal direction to the beam 

trajectory. 
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3.2 Twin silver nanowires: resonances on the plasmon supermodes 

 

In this section, the DR from a modulated beam of electrons moving between the 

twin circular silver nanowires is considered.  

Consider two identical circular silver nanowires (marked #1 and #2 in Fig. 3.7) 

separated by the distance L between their axes, with the same radius a and complex 

refractive index ( )  = . The gap between the wires is 2s L a= −  and the Cartesian 

and the local, 1,2 1,2( , )r  , and the global, ( , )r  , polar coordinates are chosen as shown in 

Fig. 3.7.  

 

 

 

Fig. 3.7. Cross-sectional geometry of a plasmonic PM made of two identical circular 

silver nanowires excited by a modulated electron beam moving between them 

 

Consider now a one-dimensional electron beam moving along a straight trajectory 

at the distance h < s/2 from the x-axis. The charge density function and the EM field of 

the beam are represented as in section 1.2. Its magnetic field in free space is given by 

(1.2) and has finite jump at the trajectory. 
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In the presence of silver wires, the total magnetic field is different from (1.2). 

Neglecting the particles deceleration because of the loss of energy (this is called the 

given-current model), we can assume that the field (1.2) is fixed and consider it as the 

incident field. Then, to find the total field, we have to solve a 2-D boundary-value 

wave-scattering problem as explained in chapter 2.  

The silver dimer configuration coupled infinite-matrix equations are similar to the 

dielectric dimer ones (2.33), however, imply the use of the wavelength-dependent 

complex dielectric permittivity of silver, presented in section 1.3. 

The scattering, absorption and extinction cross-sections are calculated similar to 

section 2.4, where the modified Optical Theorem was also presented.  

As we have verified, the error in the Optical Theorem oscillates at the level of 

machine precision and the error in the boundary conditions is the same level as for the 

solution of (2.35), controlled by the matrix truncation order M. Additionally, if we set 

the material of the wire #2 to be the free space, then the computed cross-sections 

coincide with their values for a stand-alone silver wire, found in analytical form in 

chapter 2 [17]. 

Fig. 3.8 demonstrates the dependences of the normalized by 4a TSCS and TACS 

on the electron-beam modulation wavelength in the visible range, for twin silver 

nanowires with sub-wavelength radii a = 10 nm, 50 nm, and 200 nm, separated by the 

gap of s = 20 nm. Here, the beam flows along the x-axis (i.e. symmetrically, so that the 

shift is h = 0) and the beam velocity is β = 0.9 that corresponds to so-called relativistic 

beam. 

The plots of TSCS show one, if a = 10 nm, or a few overlapping peaks, if a is 

lager. This peak is known as collective resonance on the LSP modes of one thin silver 

nanowire. In section 3.1, it was already demonstrated that the collective plasmon 

resonance on a stand-alone metal wire can be excited not only by an H-polarized plane 

wave as in [80, 128, 131, 95] but also by a modulated electron beam.  
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       (a)       (b) 

 

Fig. 3.8 Normalized TSCS (a) and TACS (b) of two identical silver nanowires versus 

the wavelength, for the electron beam with the relative velocity β = 0.9 flowing along 

the x-axis (h = 0) 

 

The plasmonic PM built of twin circular metal nanowires is a more complicated 

open plasmonic resonator. Its natural modes have much in common with the modes of 

PM built of two circular dielectric wires, studied in section 2.2 (see also [122]). They 

form so-called “plasmonic supermodes” built on optically coupled LSP modes of each 

wire. In the case of twin wires these supermodes make quartets where each of them 

belongs to one of four independent classes of symmetry of the pair [122]. They can be, 

therefore, denoted as , , ,EE OE EO OO

m m m mP P P P , where E(O) corresponds to the even (odd) 

dependence on x and y. 

Note that similarly to the plane-wave scattering from a single circular silver wire 

[95], for the thicker wires the LSP peak in the scattering cross-section splits to several 

ones, where the most red-shifted peak corresponds to the supermode built on the P1 

mode of each wire, and others correspond to the supermodes on the higher-order LSP 

modes. In view of the symmetry, partial SCS are each equal to one-half of TSCS.  

In contrast, the plots of TACS of a deeply sub-wavelength silver wire 

demonstrate only one common peak, slightly blue-shifted for the thicker wires from the 
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quasi-static value of 337 nm. The higher-order LSP resonances show up as gentle 

“shoulders” on the red side of that peak. 

The effect of “quasi-invisibility” is present on the plots of TSCS for both thin and 

thick silver wires (note that this phenomenon has no relation to “Fano-shape” 

resonances in the other scattering analyses). The associated minimum is especially deep 

for a deeply sub-wavelength wire. On the plots of TACS, there is no similar minimum 

due to considerable losses in the bulk silver.  

In Fig. 3.9, we present the normalized far-field scattering patterns at the 

wavelengths of the peaks on the TSCS plots of Fig. 3.8 (a). As the beam flows strictly in 

the middle between the wires, the angular patterns have zeros along the x-axis. The 

number of lobes in the far zone corresponds to the mode index m. 

 

110 nm, EOa P=  
1 250 nm, EO EOa P P= +  

2 150 nm, EO EOa P P= +  

   

(a)  (b)  (c)  

6200 nm, several EO

ma P =  5200 nm, EOa P=  4200 nm, EOa P=  

   

(d)  (e)  (f)  

 

Fig. 3.9 Normalized far-field scattering patterns of the twin silver nanowires for the 

beam flowing along the x-axis (h = 0) with the relative velocity β= 0.9. The wire radius 

is as indicated, and the wavelength is λ = 337 nm (a), 332 nm (b), 354 nm (c), 332 nm 

(d), 354 nm (e), and 382 nm (f) 
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Now, to clarify the effect of the shift of the beam trajectory on the scattering and 

absorption, we show the visible-range spectra of the partial SCS and ACS for several 

values of the silver wire radius a and the gap of 20 nm however assuming that h = 5 nm. 

To see what changes if the beam velocity β varies, we select it as 0.3, 0.5 and 0.9 

The plots in Fig. 3.10(a) demonstrate the dependences of the normalized by 4a 

partial SCS on the modulation wavelength in the visible range, for nanowires with 

deeply sub-wavelength radius of a = 10 nm. As one can see, for all values of β, the plots 

of partial SCS, (1)( )sc   and (2) ( )sc  , are very close to each other. They show one 

distinctive peak at λ = 337 nm that does not change its place noticeably if the beam shift 

h gets larger. Effect of the “quasi-invisibility” is also well visible as a deep minimum, 

slightly red-shifted from the value of 306 nm where the bulk silver dielectric function is 

the closest to +1.  

 

  

         (a)                                                                (b)  

 

Fig. 3.10 Normalized partial SCS and ACS of twin silver nanowires with radius 10 nm 

versus the wavelength in the visible range, for several values of the electron velocity β. 

The beam flows above the x-axis at the distance h = 5 nm 

 

In the absorption (Fig. 3.10(b)), the LSP peak appears at a slightly blue-shifted 

position between 330 nm and 335 nm, depending on the velocity β and shift value h. As 
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already mentioned, there is no “invisibility” effect in the absorption as the silver is 

sizably lossy in the deep ultra-violet. Note that the partial TCSs of such thin nanowires 

are practically the same for any beam velocity β. The plots of ACS demonstrate a 

similar independence of β for relativistic beams, however, if β becomes smaller, the 

difference in favour of the nearer wire becomes visible. 

Colour maps in Fig. 3.11 demonstrate in-resonance patterns of the near magnetic 

field for such deeply sub-wavelength wires. Panel (a) corresponds to the peak in the 

scattering. One can conclude that the near field is dominated by the contribution of two 

nearly degenerate supermodes, 
1

EOP  and 
1

OOP . The field on the panel (b) corresponds to 

the “scattering invisibility” wavelength. It shows, indeed, that in this case the beam of 

particles does not see the silver nanowires, and its field is very close to the field (1.2) in 

the free space. 

 

  

(a) (b) 

 

Fig. 3.11 Normalized near magnetic field patterns of the 10-nm in radius twin silver 

nanowires excited with the electron beam having the velocity β= 0.3, in the plasmon 

resonance at λ = 337 nm (a) and in the “quasi-invisibility” case (minimum scattering) 

at λ = 330 nm (b). The beam flows above the x-axis: h = 5 nm 

 

 For the better insight into the physics of DR, the plots in Figs. 3.12 present the 
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spectra of the partial SCS and ACS for the beam-excited twin silver nanowires of larger 

radius, 200 nm. 

Unlike the thinner wires, these configurations show, besides of the main peak, 

several smaller ones at the longer wavelengths. They are well resolved on the SCS plots 

and correspond to the EO supermodes built on the higher-order LSP modes Pm of each 

circular wire (see [133]). 

 

  

(a) (b) 

 

Fig. 3.12 The same as on Fig. 3.10 however for the wire radius 200 nm 

 

The patterns in Fig. 3.13 correspond to the most “violet” peak of SCS that is 

collective resonance on higher-order LSP modes. In contrast Fig. 3.14 shows the near 

fields, dominated by the LSP supermode modes 
EO

mP  with m = 5 (a) and m = 4 (b), 

respectively. This interpretation is also supported by the far-field angular scattering 

patterns, presented in Fig. 3.9. The plots of partial cross-sections show that, unlike 

thinner wires, the thicker ones demonstrate that the nearer to the beam wire is both a 

stronger scatterer and a stronger absorber unless the beam is relativistic (that is if 

1 → ) although for the 200-nm wire the near field patterns are almost symmetric. 
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(a) 

 

 

 

(b) 

 

  

Fig. 3.13 Near magnetic field patterns of the 200-nm in radius twin silver nanowires at 

λ = 332 nm (the most “violet” peak), for the electron beam velocity β= 0.9 (a) and β= 

0.3 (b); the beam flows above the x-axis (h = 5 nm) 

 

 

 

(a) 

 

 

 

(b) 

 

  

Fig. 3.14 The same as in Fig. 3.13 however in the smaller peaks of TSCS in Fig. 3.12, 

that is at λ = 354 nm (a) and λ = 382 nm (b). The electron beam is relativistic, β= 0.9, 

and flows above the x-axis, h = 5 nm 

 

Thus, the spectra of DR-caused SCS and ACS for solid circular silver wire dimer 

show that such a configuration “does not feel” the shift of the beam trajectory from the 

central position. This happens because (i) the LSP modes of single wire and LSP 

supermodes of dimer are nearby degenerate and cluster at the “textbook” wavelength, 

where Re ( ) 1  = , and (ii) they have low Q-factors, between 5 and 20. 
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3.3 Twin silver nanotubes as a model of beam position monitor 

 

The results of the previous section suggest that, to be sensitive to the beam shift, 

the nanoscale noble-metal dimer elements should have LSP modes, which are (i) well-

separated in wavelengths for different azimuthal orders, m, and (ii) have larger Q-

factors. Such modified elements can be still circular, in cross-section, however, shaped 

as thin hollow silver nanotubes, as follows from [138, 95]. 

 

3.3.1 Formulation and basic equations 

 

Considered BPM configuration is shown in Fig. 3.15. Two circular silver 

nanotubes (#1 and #2) have the same outer radius a, inner radius b, and refractive index  

( )  = . They are separated by the air-gap s, with L being the distance between their 

axes. We assume that beam of particles (1.1) passes between the tubes in parallel to the 

x direction at the distance h from its surface. The Cartesian and the local and global 

polar coordinates are chosen as depicted.  

 

 
 

 

Fig. 3.15 Cross-sectional geometry of electron beam moving between two identical 

circular silver nanotubes 
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The formulation of the 2-D wave-scattering problem for the DR field, i.e. the 

scattered field function, involves the Helmholtz equation, the penetrable-boundary 

conditions at tube contours, the Sommerfeld radiation condition at infinity, and the 

condition of local power finiteness. The solution uniqueness is guaranteed by these 

conditions. 

As the nanotube dimer partial domains are different from solid wire case, below 

we present complete derivation of the resulting matrix equations. 

Inside each void and tube (domains I and II), we expand the magnetic field in the 

azimuthal Fourier series, respectively, 

 

int( ), ( )( , ) ( ) , , 1,2pimp I p

p p m m p p

m

H r y J kr e r b p





=−

=  =  ,                       (3.1) 

int( ), ( ) ( )( , ) ( ) ( ) ,pimp II p p

p p m m p m m p p

m

H r c J k r d H k r e b r a


  


=−

 = +    ,    (3.2) 

 

and seek the scattered field (DR field) as follows: 

 

( )

1,2

( , ) ( ) , , (2)pimsc p

m m p p

p m

H r z H kr e r a r



+

= =−

=    ,                          (3.3) 

 

At the inner wall of each tube, at , 1,2,pr b p= =  the boundary conditions 

demand that both zH  and 
p

E  are continuous,  

 

int( ), int( ), int( ), int( ),,
p p

p I p II p I p II

z zH H E E = = ,                               (3.4) 

 

As these conditions are valid for all 0 2p   , they allow us to exclude some of 

the unknown coefficients. The boundary conditions at the other walls, at 
pr a=  and 
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0 2p   , are 

 

int( ), 0 int( ), 0,
p p p

p II sc p II sc

z z zH H H E E E  = + = +                              (3.5) 

 

Substituting into (3.5) the series expressions (3.2), (3.4) and a similar expansion 

of the beam field (1.2), and introducing new unknowns, ( ) ( )p p

n n nx z w=  , and 

0 0( 1)n

n nw w = − , 
0 !(2 / ) ,n

nw n ka =  we derive two coupled infinite-matrix equations, 

similar to one found in section 2.4 for p = 1,2. 

 

(1,2) (1,2)
(1,2) (2,1) ( ) ( ) , 0, 1, 2,...,n mm m m m m
m n n m n

nm m m m

V f F f F
x x w i H kL m

w D w D


+
−

−

=−

 −
+ = =  

   

(3.6) 

 

where the prime denotes the differentiation in argument and 

 

( ) ( )m m m m mV J ka F J ka F = − ,                                       (3.7) 

( ) ( )m m m m mD H ka F H ka F = − ,                                        (3.8) 

( ) ( ) ( , )m m m mF J k a H k a S kb  = + ,                               (3.9) 

( ) ( ) ( , )m m m mF J k a H k a S kb      = + ,                          (3.10) 

( ) ( ) ( ) ( )
( , )

( ) ( ) ( ) ( )

m m m m
m

m m m m

J kb J k b J kb J k b
S kb

J kb H k b J kb H k b

  


  

 −
=

 −
,                   (3.11) 

(1,2) ( /2 ) 1( )(1 )q L h m m m

m mf Ae i J ka  −  − += ,                         (3.12) 

 

Note that (3.6) reduces to the twin solid wire case of the previous section if 

0b →  that entails 
( ) ( ) 0p p

m m m
S y d= = = .  

Similar to the twin solid-wire case of section 3.2, the set (3.6) is the Fredholm 
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second kind matrix equation of block (2x2) type (see also [122, 128, 137]). Then the 

Fredholm theorems guarantee that its numerical solution (after truncation of each block 

to finite order 
tr

N ) converges to the exact solution for 
tr

N → . 

On using the large-argument asymptotic expressions for the Hankel functions, far 

from the scatterer ( )r →   the DR field takes the form of outgoing cylindrical wave, 

similar to 

 

1/2( , ) (2 / ) exp( ) ( ),scH r i kr ikr  =                                     (3.13) 

 

where the angular pattern is a function of the global polar coordinate, .  On the 

truncation of the matrix equation (3.6), this function depends on the coefficients (1,2)

mz  as 

follows: 

1
2

1 2

sin 1 (1,2)

1,2

( , ) ( , ) ( , ),

( , ) ( )
N

ikL m im

m m

m N

N N N

N e i w z e
 

  

 −

=−

 =  + 

 = −                              
(3.14)

           
 

 

Then, the partial SCS, associated with the DR power radiated into the lower and 

the upper half-spaces, are found as 

 

( )
21(1,2)

0
( ) 2 ( , ) ,sc N k N d



   
−

=                                  (3.15)  

 

The partial absorption cross-sections (ACS) can be found from the Optical 

Theorem, adapted to the DR analysis as in the previous sections, or, equivalently, 

through the integration of the Poynting vector flux over the outer contour of each 

nanotube, 

 

( )(1,2) (1,2) 2 *

2 2 2

2
( ) | | Im ,

| |

N

abs m m m

m N

a
N g F F

A


 

  =−

=                        (3.16) 
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where ( )mF  and ( )mF   are defined in (3.9) and (3.10), and  

 

 (1,2) (1,2)

2
( ) ( ) ( ) ( )m m m m m mg kb y J kb H k b J kb H k b     = −                      (3.17) 

 
 

In computations, we use experimental data of [93] for the dielectric function of 

silver. To check the code convergence for a varying matrix-block truncation order N and 

visualize its rate, we have computed the relative error, in the far-field SCS, with respect 

to the data computed at 30
tr

N = , 

 

(1,2) (1,2) (1,2)

1,2( ) ( ) (30) / (30)tr sc tr sc scer N N  = −  

 

The typical plots of such errors are presented in Fig. 3.16 (a).  

 

 

 

 

          (a)                   (b) 

 

Fig. 3.16 Far-field computation error versus the matrix block truncation number 
tr

N , for 

several beam velocities (a) and comparison of the far field patterns calculated by 

COMSOL and in-house code (b). BPM model consists of two silver tubes with radii a = 

50 nm and b = 45 nm, separated by the air gap of s = 20 nm; beam shift is h = 5 nm and 

wavelength is λ = 332 nm 
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As visible, 5-6-digit accuracy in the far field is achieved if the truncation order is 

 max ,( / ) 5trN kL k a  + . Thus, the slower the beam, the larger the matrix size 
tr

N  

needed for the same accuracy. This is a result of the slower decay of the elements of the 

right-hand part vector (3.12) at m →  , controlled by the factor 
m


−

. Equivalently, as 

1   , it means that electric size of the scatterer illuminated with the incident field (1.2) 

must be increased by the “beam factor,” 1/   , in comparison to the plane-wave 

scattering. 

The far-field error is by an order smaller than the near-field error that is explained 

by the presence of the factor 1/ mw in (3.14). Note that the effect of  is the same both in 

the far and near zone: slower beams request larger matrices to be inverted, for the same 

accuracy. Besides of , the electric size of the whole dimer is to be accounted for when 

selecting 
tr

N . Still besides, the rate of convergence degrades for very small values of the 

air gap width, s.   

It should be noted that, to satisfy the Fredholm theorem conditions, the tubes must 

not touch each other or the beam trajectory.  

To support our results, we present, in Fig. 3.16 (b), a comparison of two 

normalized far-field patterns, computed with our code based on (3.6), where N = 30, and 

with COMSOL commercial software. The agreement is quite good, while the 

computation time needed by COMSOL is approximately 30 times larger. Still, from the 

mathematical point of view, this comparison serves as a validation of COMSOL rather 

than our code because COMSOL’s accuracy is not controlled. 

 

3.3.2 Diffraction radiation from small and large radius nanotubes 

 

Keeping in mind BPM applications, we look for the features of DR that can serve 

as indicators of the beam shift from the central-symmetric position between the twin 

silver nanotubes. Therefore, we compute the spectra, in the visible-light range, of the 

partial SCS of the studied configuration, excited by symmetric and shifted beams. The 
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plots in Fig. 3.17 correspond to the nanotubes of the 55-nm outer radius and 5-nm wall 

thickness, with the air gap width s = 20 nm. Two trajectories of particles are considered: 

shifted by h = 5 nm (solid and dashed curves) and not shifted (h = 0, dotted curves), and 

three beam velocities, 0.9, 0.5 = and 0.3. In each case, we can see sharp resonances. 

This is because LSP modes of single silver tube are well separated, in frequency, for 

different azimuthal orders, m [95,138]. Moreover, the silver nanotube modes are hybrid, 

i.e. formed as sums and differences of the plasmon modes of the inner and outer tube 

surfaces. Their wavelengths, respectively, satisfy the quasi-static equations [138], 

 

 

1

( ) 1 2 1 1

m

m

a b

a
 

−


 − 

= −  +   
  

,                             (3.18) 

 

More accurately, in a twin-circular-nanotube plasmonic PM, these modes 

hybridize further and form quartets of closely spaced “supermodes,” with mode fields 

belonging to four classes of symmetry with respect to the x and y-axes [122]. The beam 

field (1.2) is anti-symmetric with respect to the beam trajectory. Therefore, two of four 

“supermodes” of each type cannot be excited by the symmetrically flowing beam (they 

remain “dark”) however they can shine if the beam is shifted (h ≠ 0). Indeed, this is 

actually what we observe at λ = 803 nm in Fig. 3.17, provided that the beam is non-

relativistic, 0.3. =  

Such interpretation is fully supported by the near-field patterns in the resonances, 

shown in Fig. 3.18. Panels (a) and (b) and (c) demonstrate the field portraits where the 

“dipole” LSP mode 
( )

1P −
 dominates on each tube; however, the field symmetry on (a), 

(b) is orthogonal to that on (c). 

The plots in Fig. 3.19 show the visible-light spectra of partial SCS for the pair of 

nanotubes with much larger radii of a = 200 nm and b = 195 nm, so that the wall 

thickness is again 5 nm, with the air-gap of s = 20 nm. The electron-beam velocities are 

the same as in the previous case.  
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Fig. 3.17 Normalized partial SCS versus the wavelength for twin silver tubes with radii    

a = 55 nm, b = 50 nm, beam shift h = 0 and 5 nm, and air gap width s = 20 nm 

 

 

 

664.2 = nm, 

h = 5 nm 

 

 

664.2 = nm, 

h = 0 

(a)  (b) 

 

 

803.2 = nm, 

h = 5 nm 

 

 

803.2 = nm, 

h = 0 

(c) (d) 

 

Fig. 3.18 In-resonance near magnetic field and far field scattering patterns of twin 

nanotube with radii a = 55 nm, b = 50 nm, air gap width s = 20 nm and beam shift h = 5 

nm (a), (c) and h = 0 (b), (d)  
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The trajectory shift is h = 5 nm and the data for zero shift are also shown as 

dotted curves. 

As before, one can see the sharp resonance peaks of the DR power on the 

wavelengths of the hybrid LSP supermodes of the silver tubes. They form a nearly 

periodic sequence where each peak corresponds to different azimuth index, m = 1,2, …. 

Note that they are much sharper than the collective LSP peaks in the DR power for 

electron-beam excited solid silver nanowire or a pair of them. 

 

  

(a) (b) 

Fig. 3.19 The same as in Fig. 3.17 for twin silver tubes with radii a = 200 nm and b = 

195 nm (a) and its zoom between the wavelengths of 600 nm and 900 nm (b) 

 

Similar to the previous case, some of the peaks appear only if the beam is shifted 

from the center of the air-gap. For instance, this takes place at λ = 733 nm and 877 nm. 

The corresponding to them hybrid LSP supermodes of twin nanotubes remain 

“dark” under the excitation by the centrally flowing beam, the field (1.2) of which is 

orthogonal to their eigenfields in symmetry. These modes, however, start resonating 

(i.e. become “bright”) if the beam is shifted, because this leads to appearance of the part 

of the incident field that matches the mode symmetry.  

The in-resonance near-field patterns in Fig. 3.20 correspond to the frequencies 

marked with arrows in Fig. 3.19. They reveal that the higher-order LSP modes 
( )

3P −
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dominate on each tube on panels (a), (b) and (c), however, with different “supermode” 

symmetries. On panel (e), the field of the LSP mode 
( )

2P −
 can be identified. The peaks at 

the shorter wavelengths correspond to the larger LSP indices m. 

 

 

 

672.9 = nm, 

h = 5 nm 

 

 

672.9 = nm, 

h = 0 

(a) (b) 

 

 

732.9 = nm, 

h = 5 nm 

 

 

732.9 = nm, 

h = 0 

(c) (d) 

 

 

877.1 = nm, 

h = 5 nm 

 

 

877.1 = nm, 

h = 0 

(e) (f) 

 

Fig. 3.20 In-resonance near magnetic field and far field scattering patterns of twin nanotube 

BPM with tube radii a = 200 nm, b = 195 nm, air gap s = 20 nm and beam shift h = 5 nm 

(a), (c), (e) and h = 0 (b), (d), (f). marked with arrows in Fig. 2.19 
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3.3.3 Absorption of light by twin nanotubes 

 

As the silver is sizably lossy in the visible-light range, the absorbed in the 

nanotubes power is not expected to be small. We characterize this power with the aid of 

two partial ACS, given by (3.15). In Fig. 3.21, we present the spectra of ACS for the 

same two configurations of twin-nanotube BPM, however only for the case of the 

trajectory, shifted by 5 nm from the central-symmetrical position. They show the 

resonances on the hybrid LSP supermodes of twin silver nanotubes. As discussed above, 

some of these supermodes are not excited by a non-shifted beam.  

 

  

(a) (b) 

Fig. 3.21 Normalized partial ACS versus the wavelength for twin silver tubes with radii 

a = 55 nm, b = 50 nm (a), and a = 200 nm, b = 195 nm (b)  beam shift  h = 5 nm, and air 

gap width s = 20 nm 

 

In general, one can see that the absorption in nanotubes is roughly by an order of 

magnitude larger than the scattering. This is in full agreement with similar relationship 

between the plane-wave scattering and absorption by metal nanoparticles in the visible 

range [19,20]. 

To provide a better vision of the dependence of total SCS and ACS on the 

wavelength and the tube wall thickness, we present the color maps of these quantities 
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for the not-shifted and shifted beam in Fig. 3.22 and Fig. 3.23, respectively. White 

dashed curves are predicted by the quasi-static analysis of hybrid LSP modes 
( )

mP −
 of 

stand-alone nanotube, see [138]. These maps visualize the resonance on the supermode 

( )

1P −
 of the y-even family, marked with arrow, which is present if h = 5 nm, however 

remains “dark” if the beam is not shifted. 

 

  

(a) (b) 

 

Fig. 3.22 Color maps of total SCS (a) and ACS (b) versus the wavelength and the tube 

thickness for twin silver tubes with inner radius b = 50 nm, air gap width s = 20 nm, 

beam velocity β = 0.3, and no beam shift (h = 0) 

 

  

(a) (b) 

Fig. 3.23 The same as in Fig. 3.22 however for the beam shift h = 5 nm 
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3.3.4 Estimation of electron-beam power loss 

 

Presented above are the data for partial and total SCS and ACS, which are 

traditional quantities in the analysis of optical scattering. Together, they yield the 

extinction cross-section, which characterizes the total power taken from the incident 

field in the presence of scatterers. Still, unlike the traditional plane-wave scattering, the 

power carried by the beam field (1.2) through the plane, normal to its trajectory, is 

finite. This power is given by the equation  

 

 
2 2 1

0 0 ( )P A Z k  −=                                                 (3.19) 

 

Therefore, it is useful to compare (3.19) with the scattered and the absorbed 

powers, given by 1
2/ /sc abs sc absP = . In Fig. 3.24 and 3.25, we show the spectra of the 

normalized quantities, 
0/scP P  and 

0/absP P , computed via the data of Fig. 3.17 and 3.19, 

respectively. As one can see, if the beam velocity does not exceed β = 0.5, the radiated 

power remains below 5% of the beam power even in the resonances, both for small (a = 

55 nm) and large (a = 200 nm) nanotube dimers. This validates the DR model based on 

the assumption that the beam velocity is fixed. 

The power, absorbed in the silver nanotubes, is several dozen times larger than 

the DR power, and in the LSP-mode resonances it can exceed 50% if β = 0.5 for a 

small-tube dimer and even 70% for a large-tube dimer. Therefore, the absorption plays 

more important part than the scattering, in the total reduction of the beam power. This 

reminds us that even the most sophisticated particle accelerators sometimes suffer of 

unwanted heating incidents [139].  

Additionally, this tells that the fundamental assumption of the DR modelling, that 

the beam is not influenced by the presence of imperfect scatterers, holds true only 

provided that the scatterers are not tuned to high-Q resonances and, generally speaking, 

if the beam is not relativistic.  For the twin nanotubes studied here, the safe limit, in 
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terms of velocity, is around β= 0.2: then the total power loss of the beam is within 10%, 

some 1% of which goes to DR and the rest – to the heating. To widen the area of 

applicability of the DR model, one should consider the configurations, where the 

scatterers are placed at the larger distances from the beam trajectory. 

 

  

(a) (b) 

Fig. 3.24 Partial SCS (a) and ACS (b) versus the wavelength for twin silver tubes with 

radii a = 55 nm, b = 50 nm, beam shift h = 5, and air gap width s = 20 nm 

 

  

(a) (b) 

 

Fig. 3.25 The same as in Fig. 3.30 for tubes with radii a = 200 nm, b = 195 nm 
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Conclusions to Chapter 3 

 

- We have studied the optical-range DR that accompanies the motion of the 

charged-particle beam near a stand-alone plasmonic silver nanowire that has never been 

considered earlier. As we have shown, both the radiated and the absorbed powers are 

enhanced near the natural mode wavelengths of the plasmonic nanowire as open 

resonator. In this case, in-resonance fields are shaped as rotating cylindrical waves made 

of two degenerate LSP modes with nearly π/2 phase shift. Unlike DR in the presence of 

a dielectric nanowire, a metal nanowire placed in vacuum also displays the effect of 

“invisibility” at the wavelength close to the optical transparency of metal. 

- Besides, we have investigated, for the first time to the best of our knowledge, 

how the visible-light DR is emitted if a beam moves between a pair of identical circular 

silver nanowires. As we have found, they behave as optically coupled plasmonic open 

resonators. Because of the losses in silver, their LSP supermodes (that is, hybrid modes) 

have rather low Q-factors however are still able to enhance the DR at the corresponding 

wavelengths. If the beam trajectory shifts away from the central (symmetrical) position 

between the silver wires, then the near field pattern also loses symmetry. This is better 

visible if the wire radius is truly sub-wavelength and the beam is non-relativistic. Still, 

unlike a pair of high refractive index dielectric nanowires, the low values of LSP mode 

Q-factors and their clustering near to the same wavelength show that the solid circular 

metal wires are not the optimum shape for the applications related to the optical beam-

position monitors.  

- Trying to overcome the above mentioned circumstances, we have shown, using 

a trusted and efficient in-house computational instrument, that the modulated beam of 

charged particles can be monitored noninvasively by measuring the power of the DR, if 

the beam passes between two identical thin silver nanotubes. This power, as a function 

of the modulation wavelength, displays sharp peaks on the hybrid LSP supermodes of 

twin nanotubes, now well separated for the different azimuthal orders.  Some of these 

modes are excited only if the beam trajectory is shifted away from the central-
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symmetrical position, due to the symmetry properties of the corresponding supermode 

field. This effect can be used in the design of optical-range BPMs. We have also shown, 

for the first time in our opinion, that the area of good adequacy of the DR model is 

limited, in the presence of nanoscale resonant scatterers, to the non-relativistic beam 

velocities. 
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CHAPTER 4 DIFFRACTION RADIATION OF A BEAM OF PARTICLES   

MOVING NEAR GRAPHENE-COVERED DIELECTRIC NANOWIRES 

 

In this chapter, the DR-caused scattering and absorption characteristics in the 

visible range are numerically investigated for a stand-alone circular dielectric nanowire 

covered with graphene, twin graphene-coated nanowires configuration and finite array 

of circular graphene-covered dielectric nanowires. As in previous chapters, we assume 

that the beam velocity is fixed and use the separation of variables in local coordinates 

and the addition theorems for cylindrical functions to cast the DR problem to a 

Fredholm second-kind matrix equation. For the zero-thickness graphene covers, the 

two-side resistive boundary conditions are requested. Here the electron conductivity and 

hence the surface impedance of graphene are determined from the Kubo formalism. The 

materials of Chapter 4 are published in works [A2, A7-9, A11, A13]. 

 

4.1 Single circular graphene-coated nanowire: resonances on the plasmon and 

whispering-gallery modes 

 

The DR problem for the modulated electron beam moving near stand-alone 

graphene-coated nanowire (see Fig. 4.1) is similar to the DR problem of the beam 

exciting a dielectric circular nanowire, as presented in sections 2.3. However, the 

difference is in the graphene material of the dielectric ( = , 
1 /k c k = = ) wire 

cover. Graphene properties were explained in section 1.4 and its surface impedance was 

discussed there.   

 

4.1.1 Basic equations 

 

As in preceding chapters, the incident field in the DR problem is the free-space 

electron-beam field given by (1.2), and the scattered field can be presented as (2.22). 
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Fig. 4.1 Cross-sectional geometry of electron beam moving over a dielectric circular 

nanowire coated with graphene 

 

 

The only difference in the problem formulation is in the boundary conditions, 

which account for the surface impedance (or resistivity) of graphene, Z, and is given by 

(1.5). These boundary conditions are two: one tells that the tangential electric field 

should be continuous across the coated wire contour,  

 

0 int( )( , ) ( , ) ( , )ext pE a E a E a    + = ,                                    (4.1) 

 

and the other tells that the tangential magnetic field has a jump proportional to the 

surface conductivity of graphene, 

 

int( ) 0 int( ) 0

0( , ) ( , ) ( , ) 2 ( , ) ( , ) ( , )p ext p ext

z z zE a E a E a ZZ H a H a H a        + + = − −  ,   (4.2) 

 

Then, substituting the field expansions (2.22) into (4.2), we obtain 

 

0 0 0( ) ( )m m m m mZ f Z b kH ka Z a k J k a

ik ik ik

 



  
+ = ,                             (4.3) 
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 0 0 0
0

( ) ( )
2 ( ) ( )m m m m m

m m m m m

Z f Z b kH ka Z a k J k a
ZZ a J k a f b H ka

ik ik ik

 




  
+ + = − − ,  (4.4) 

After transformations, we get the following equations: 

 

1( ) ( ) ,m m m m mb H ka a J k a f −  − = −                                   (4.5-a) 

1 1( ) ( ) ( ) m

m m m m m m miZb H ka a J k a iZa J k a i Zf  − ++ − = − ,               (4.5-b) 

 

Here, the functions mf  and mf   are the same as (2.26). Then, the field expansion 

coefficients are found as the following analytical expressions: 

 

1 1[ ( ) ( )]( )m

m m m m m ma i Zf H ka iZf H ka D+ − = − + ,                       (4.6-a) 

1 1 1{ ( ) ( ) ( ) }( )m m m m m m mb f J k a iZJ k a f J k a D    − − −    = − − −  ,     (4.6-b) 

 

where   

 

1 1( ) ( ) ( ) ( ) ( ) ( )m m m m m m mD H ka J k a iZ H ka J k a H ka J k a    − −    = − −  ,   (4.7) 

 

The DR characteristics - SCS and ECS - are the same as for the single dielectric 

wire and expressed as (1.13) and (1.15). Meanwhile, if the dielectric is assumed 

lossless, then the absorption cross section (ACS) is given by (1.10). 

Considering that 
0 int( ) extw H H H = + − , then 

 

2

12 2
Re ( ) ( )abs m m m m m

m

a
Z a J k a b H ka f

A






+

=−

= − − ,                   (4.8) 

 

Additionally, as we have shown in section 1.5, ACS can be also found with the 

aid of SCS and ECS from the Optic Theorem - see (1.12).  
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4.1.2 Natural modes of single graphene-covered dielectric wire 

 

A stand-alone circular dielectric wire covered with graphene is a composite open 

resonator, which supports the natural modes of two families: dielectric-rod modes, 

which obtain the features of the whispering-gallery (WG) modes if the radius a and/or 

refractive index  =  is getting larger, and the plasmon modes of the graphene cover.  

On the circular graphene-coated wire, complex frequencies of all natural modes 

satisfy independent equations 0 ( 0,1,...)mD m= = , where 
mD  is given by (4.7). The 

plasmon modes appear in every non-zero azimuthal order, m = 1,2, ... [141]. In [99], 

they have been found approximately, after using small-argument asymptotics in (4.7). 

However, by analogy to a silver wire [95], they can be also viewed as the natural modes 

of the traveling-wave resonator formed by the closed contour of graphene cover. Then, 

neglecting the curvature of the graphene layer, the following empiric characteristic 

equation can be established: 

 

( )exp 2 1plasmig a = ,                                                  (4.9) 

 

where plasmg  is the complex wavenumber of the plasmon wave propagating along a flat 

infinite graphene monolayer located at the interface between air and dielectric. The 

roots of this equation are, obviously, , 1,2,...plasmg a m m= =  and correspond to the 

plasmon modes, Pm. The value of plasmg  can be found analytically – see equation (31) in 

[142], where we take into account that 
2

1Z  in THz and IR ranges, 

  

2 2 2 21
2

(1 ) (1 ) (| | )plasmg k Z O Z  −  − + + − +                              (4.10) 

 

Taking into account that graphene’s normalized surface impedance Z depends on 

the frequency as (1.5) and neglecting intraband conductivity (1.3), we conclude that  
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1
2( 1) 1plasm

c i
g k

kc




− 
 + + 

 
,                                          (4.11) 

 

where   is a value that follows from (1.3), namely, 

 

2

0

2
2ln 1 expe B c c

B B

q Z k T

k T k T

 



    
 = + + −   

    

                              (4.12) 

 

Then, the plasmon mode Pm resonance frequencies (i.e. real parts of the complex 

natural frequencies) are found approximately as  

 

1/2

1

2 ( 1)

P

m

mc
f

a 

 
  + 

                                                (4.13) 

 

Note that expression (4.13) agrees with equation (12) of [99] (here, one has to 

account for the different systems of units, CGS in [99] and SI in our work). Besides, the 

Q-factors of the plasmon modes, in the same approximation (i.e. the absorption Q-

factors), are found to be proportional to the electron relaxation time, 

 

1/2

3/2

4

(1 )

P

m

mc
Q

a





 
  

+  
                                             (4.14) 

 

As one can see, both resonance frequencies and Q-factors of the plasmon modes 

of a graphene-covered circular dielectric wire grow as a square-root of the mode index. 

Besides, in view of (4.12) they grow approximately as a square-root of the chemical 

potential, which, in its turn, is known to be proportional to DC bias. Therefore, higher-

order plasmon modes have certain advantage, in the higher Q-factors, before the lower-

index modes including the principal “dipole” mode, P1. The growth with m is limited, 
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however, by the radiation losses, which were neglected when deriving (4.13) and (4.14). 

The spectral distance between the adjacent plasmon modes gets smaller with m. 

The dielectric-wire modes, perturbed by the presence of graphene cover, also 

correspond to the (other) roots of equations 0mD = ; if | | 1Z   and /m ka m   , 

they obtain the features of the WG modes, such as periodically spaced frequencies and 

high Q-factors. However, due to the losses in graphene, the exponential growth of the 

Q-factors with m and α is now limited at the level, determined by the graphene 

parameters, τ ,
c  and T. That limit value has the order of (ImZ/ ReZ)O . 

Note also that, in a stand-alone circular resonator, all modes with m > 1 are 

doubly degenerate, because sinm  and cosm  field dependences are orthogonal 

however lead to the identical characteristic equations. 

 

4.2 Twin graphene-coated nanowires as a model of beam position monitor 

 

Here, we consider a flat modulated beam of electrons flowing along the straight 

trajectory at the distance h from the x-axis, with a fixed velocity c =  as described in 

section 1.2. Two identical circular dielectric wires with graphene covers have the radius 

a and refractive index  =  - see Fig. 4.2. They are placed in the free space with the 

air-gap s and L is the distance between their axes. We assume that the beam of particles 

(1.2) flies in parallel to the x direction between the wires at the distance h from the 

center of the air-gap. We introduce the Cartesian and the local 1,2 1,2( , )r    and global 

( , )r   polar coordinates as shown in Fig. 4.2.  

 

4.2.1 Basic equations 

 

In the case of the H-polarization, one can derive all the field components from the 

z-component of the magnetic field vector. 
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Fig. 4.2 Cross-sectional geometry of electron beam moving between a pair of identical 

dielectric circular nanowires with graphene covers  

 

Omitting the index z, we look for the total field as (2.5). Inside each wire and off 

them (domains (1.1), (1.2) and (2)), we expand the field in the azimuthal Fourier series 

in the local polar coordinates as in (2.6) and (2.7), respectively  

The boundary conditions at the wire contours, , 0 2 ( 1,2)p pr a p =   = , are 

the conditions for a zero-thickness resistive sheet placed at the interface between the 

free space and dielectric; they are expressed as (4.1), (4.2).  

Here, the graphene complex-valued surface impedance in the THz range (where 

the interband conductivity can be safely neglected [21-23,107]) is 

 

( )0 intra, , , 1/cZ Z T   = ,                                                 (4.15) 
 

and was also explained in detail in section 1.4. 

On expanding the beam field (1.2) in terms of the Fourier series in the local 

coordinates similar to section 2.1, we obtain 
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1,20 ( /2 )

1,2 1,2 1,2

1
( , ) ( )

m

imq L h m

z m

m

H r A e i J kr e


 


+
− 

=−

 
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 
 ,                   (4.16) 

 

Then, we substitute the series (2.6), (2.7) and (4.16) into the conditions (4.1) and 

(4.2) and use the Graf addition theorem (2.9) for the cylindrical functions to transfer the 

expansions from one local coordinate system to the other. Finally, on introducing new 

unknowns, ( ) ( ) ,p p

n n nz x w= 2

0 0 0!(2 / ) , ( 1)n n

n n nw n ka w w  = = −  we derive two 

coupled infinite-matrix equations, similar to (2.33), however, containing new terms 

dependent on Z, 

 

(1,2)
(1,2) ( )( ) ( ) , 0, 1, 2,...,n m jm m
m m n m n n m

nm m

V F
x w i w H kL x w m

D D

+
−

−

=−

+  = =  
         

(4.17) 

 

where 

1 ( ) ( ) ( ) ( ) ( ) ( )m m m m m m mV iZ J ka J k a J ka J k a J ka J k a   −    = + − ,           (4.18) 

1 ( ) ( ) ( ) ( ) ( ) ( )m m m m m m mD iZ H ka J k a H ka J k a H ka J k a   −    = + − ,      (4.19) 

(1,2) 1 (1,2) (1,2) (1,2)( ) ( ) ( )m m m m m m mF iZ f J k a f J k a f J k a   −    = − − − ,                  (4.20) 

 
(1,2) ( /2 ) 1( )(1 ) ,q L h m m m

m mf Ae i J ka  −  − +=                  (4.21) 

(1,2) (1,2) / ( )m mf f ka =                                         (4.22) 

 

What is important, thanks to the re-scaling of the unknowns with the aid of the 

factors 
nw , the matrix equation (4.17) is the Fredholm second-kind operator equation 

provided that 2L a  (see the explanations in [24-26]; note that here the presence of the 

terms with 1Z −  does not spoil this property). This guarantees the convergence of the 

numerical solution of (4.17), in mathematical sense: if each block of (4.17) is truncated 

to finite order 
tr

N , then, by taking progressively larger values of 
tr

N , one can minimize 
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the error in finding the coefficients  (1,2) tr

tr

N

m m N
x

+

=−
, in principle, to machine precision. 

Note that without the mentioned re-scaling, the matrix equation of this kind can provide, 

at best, the accurate values of the first 2-3 digits and hence remains impractical in the 

case of sharp resonances. This crucial circumstance is frequently overlooked or 

neglected even in the tutorials - see, for instance, [82, 85, 99, 129, 140].  

As we are interested in the modeling of BPM, we have to compute some DR 

characteristics, which can be observable in practical situations. As usual, such 

characteristics are related to the field far from the scatterers. The partial SCS 

corresponding to the DR power, radiated to the lower and the upper half-spaces, are 

given by (1.8).   

Still, the scattering is accompanied with the absorption because graphene is a 

lossy material, see (4.15). Therefore, we introduce the partial ACS, found as 

 

(1,2) (1,2) (1,2) (1,2) (1)

2 2

Re
( ) ( ) ( )abs n n n n n

n

Z
a y J k a f ka z H ka

A
  





=−

= − + + +     (4.23) 

2

(2,1) (1)( ) ( ) ( )m n

n m n m

m

J ka i z H kL


−

−

=−

  

 

Note that the sum of the partial SCS and ACS is the extinction cross-section, 

(1) (2) (1) (2)

ext sc sc abs abs    = + + + . This value is linked to the DR far-field amplitude, 

 

1 1
2 2

sin sin(1) (2)( ) ( ) ,
ikL ikLm im

m m m

m

i w e z e z e
  

+
−

=−

  = − +
                       (4.24) 

 

computed in the directions of the so-called complex angles of incidence (see section 1.5 

and [25] for details), 

 

 
(1) (2)

/24
Re ( )

(1 ) (1 )

qh qh
qL m m m m

ext m m m
m

e z e z
e i w

kA
 

  

−+
−

=−

 
= − − + 

+ − 
                 (4.25) 
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 This is the Optical Theorem for the DR, which accompanies the motion of the 

modulated beam of charged particles between scattering obstacles. It can be used for a 

partial validation of the computed results. In our analysis, this expression has been 

satisfied at the level of machine precision. 

 

4.2.2 Natural modes of graphene-covered dimer 

 

Configuration of twin circular dielectric wires, shown in Fig. 4.2 and known as 

dimer, is even more complicated open resonator than a stand-alone graphene-covered 

wire, because the modes of individual wires are now optically coupled. Mathematically, 

this is visible from the fact that now the mode equations do not split into the azimuthal 

orders and their natural frequencies are the roots of the determinantal equation, 

generated by the whole matrix (4.18). Physically, the optical coupling forces the modes 

to hybridize; to emphasize the coupling, the hybrid modes of the dimer are called 

“supermodes” [122]. Due to the presence of two lines of symmetry, in the cross-section 

(which are the x and the y axes), all supermodes of a circular-wire dimer split into four 

orthogonal classes according to the field symmetry (even dependence) or anti-symmetry 

(odd dependence) along these axes. They are usually denoted as EE, EO, OE and OO 

classes and can be studied separately after the separation of corresponding 

determinantal equations [122].  

Therefore, for a dimer of twin circular open resonators, instead of a single doubly 

degenerate LSP mode of each wire, a quartet of closely spaced LSP supermodes 

appears. A numerical study of the supermodes of twin dielectric disks has shown (see 

[122]) that each quartet of supermodes forms two even closer spaced doublets, of the 

EE and OE modes and the EO and OO modes, respectively. Recently, the same has 

been demonstrated for the LSP supermodes of a dimer of graphene-covered dielectric 

wires [99]. Numerical analysis of the supermodes of graphene-covered dimer will be 

presented in Chapter 5 in the LEP formulation. 
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4.2.3 Numerical results: resonances on the plasmon supermodes 

 

In the case of 2-D modelling, a design of DR-based BPM sensor involves not a 

single scatterer but two identical ones, for instance, the edges of a slot [16], so that the 

beam moves between them. Then a difference in the DR intensity or in the angular 

radiation patterns from the opposite sides of the beam trajectory can serve as indicator 

of a shift in the beam position. This explains the interest in the twin solid dielectric 

nanowire and twin noble-metal solid-wire and nanotube BPM configurations, studied in 

previous chapters. Note that DR from a dimer of spherical dielectric particles has been 

studied in [143] in approximate manner, using the concept of the averaged 

polarizability. 

In the full-wave analysis, our goal is to investigate how the position of the beam 

trajectory influences the power of DR and the excitation of high-Q plasmon resonances. 

Figs. 4.3 to 4.5 present the results of the calculation of normalized partial SCS and ACS 

versus the frequency for twin graphene-covered dielectric nanowires with radius                   

a = 500 nm and 100 nm, separated by the air gap of the width s = 100 nm. The relative 

dielectric constant of the wire material is assumed to be 2.4. Graphene parameters are                

T = 300oK, τ = 0.5 ps, and several values of the chemical potential are tried. Two beams 

with the same relative velocity β = 0.5 are considered: not shifted from the central-

symmetric position, h = 0, and shifted by h = 40 nm. 

The truncation order of the blocks of the matrix equation (4.19) is selected 

according to the rule, explained in [41]: max{ , / } 5trN k a ka = +  that guarantees 

5 correct digits in the found coefficients. This rule is especially important for the non-

relativistic beams, 1  , because the right-hand part coefficients in (4.18) behave as 

| |[( / 2 ) ]nO ka   if | |n ka , i.e. drop slowly. 

For the selected geometrical and material parameters, single wire plasmon-mode 

resonance frequencies are well predicted by equation (4.13) and get to the IR frequency 

range. Small shifts from (4.13), for the dimer supermodes, can be also estimated [99]. 
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Fig. 4.3 Normalized partial SCS and ACS versus the frequency for twin dielectric 

nanowires covered with graphene with parameters as indicated and beam shifts h = 0 

and 40 nm. Dotted vertical lines are the single-wire plasmon-mode frequencies, 

predicted by eq. (4.13) 

 

 As can be seen in Fig. 4.3, if the wire radius is a = 500 nm and graphene’s 

chemical potential is μc = 0.5 eV, there are a few lower-frequency plasmon-mode 

resonances both in the scattering and in the absorption. However, they are almost the 

same both with and without the shift of the beam trajectory from the central-symmetric 

position, where it passes through the air-gap center. This means that the supermodes of 

twin-wire dimer that belong to the classes EE and OE (“dark” if the shift is absent) 

remain very weakly excited (see small bumps on the red side of (4.14), unlike their 

sister-modes of the EO and OO classes. The latter supermodes shine as one peak (i.e. 

are still unresolved) in both cases on the blue side of each frequency, predicted by 

(4.14). This unfavorable for the BPM design situation can be overcome if the Q-factors 

of the plasmon supermodes are made larger. Equations (4.15) and (4.13) tell that this 

can be achieved by either making the wire radius smaller or increasing the chemical 

potential of graphene, i.e. using a larger DC bias. This effect is accompanied with a 

frequency up-shift, see (4.14); this holds for the supermodes of each symmetry class.  

While the fabrication of thinner wires seems to be realistic, the largest reported so 
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far value of graphene’s chemical potential is only 1 eV (still, larger values can become 

realistic in future). Indeed, the computations made for a = 100 nm with μc = 0.5 eV and 

1 eV (see the plots in Fig. 4.4 and Fig. 4.5, respectively), reveal the same but sharper 

resonances on the still unresolved mode doublets EO-OO, both in TSCS and ACS. 

However, now a shift of the beam trajectory triggers the excitation of new resonances 

on the unresolved mode doublets EE-OE, which remained “dark” if the beam was not 

shifted. Such resonances are associated with the “supermodes” of twin wires, whose 

symmetry is orthogonal to the beam field (1.2).  

 

 
 

Fig. 4.4 The same as in Fig. 4.3 for the radius a = 0.1 µm. 

 

 

 

Fig. 4.5 The same as in Fig. 4.4 for the chemical potential μc=1 eV 
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This is exactly the same effect, which we are looking for, to be used in BPM 

design. Note that if a larger, say, 10 eV, chemical potential could be realized, then the 

mentioned new peaks become impressively larger and sharper (not shown here).  

Earlier similar effect was found in the nanosize models of BPMs built on twin 

high-refractive-index dielectric wires in section 2.4 and twin silver nanotubes in section 

3.3. Note that in those sections, the range corresponded to the visible-light frequencies 

while what we discuss here takes place at one order lower IR frequencies. Of course, in 

the covered circular dielectric wires, a modulated beam of particles can excite the 

resonances on the WG modes as well (slightly perturbed by the presence of graphene 

cover), however, for the wire radius taken here they become visible at the frequencies 

well above 100 THz. 

For the BPM applications, it is interesting to know how the intensity of new 

resonances depends on the beam shift value. As seen in Fig. 4.6, the it is approximately 

proportional to the trajectory displacement. 

 

 
 

Fig. 4.6 Variation of the magnitude of new resonance on the beam displacement h 

 

The near fields, computed in the peaks of TSCS in Fig. 4.5 for the case of the 

shifted beam trajectory, are shown in Fig. 4.7.  
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(a) 

30.16 THz 

  

 

 

 

(b) 

32.3 THz 

  

 

 

 

(c) 

43.77 THz 

 
 

 

 

 

 

(d) 

44.77 THz 

  

Fig. 4.7 In-resonance near magnetic field magnitude (left) and phase (right) patterns of 

twin dielectric nanowires covered with graphene with radius a = 0.1 µm, the chemical 

potential μc = 1 eV, beam shift h = 40 nm and air gap width s = 0.1 µm 

 

Here, the left panel in each row corresponds to the field magnitude pattern while 

the right one corresponds to the field phase pattern. These patterns demonstrate the 

expected number of the field variations around the wires and support our interpretation 

of the plasmon-mode resonances as those associated with still unresolved supermode 

pairs of the y-even (EE and OE) and y-odd (EO and OO) classes of symmetry. 
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4.3 Finite array of graphene-coated nanowires: resonances on the lattice modes 

 

4.3.1 DR effect for two in-line graphene-covered nanowires 

 

This subsection is devoted to the analysis of the resonance effects in the DR from 

the same dimer PM made of circular dielectric nanowires coated with graphene, 

however, with a modulated electron beam moving above the wires. 

This configuration is not promising for BPM, however, it is attractive as element 

of the other devices, where electron beams are exploited. Today, after almost a century 

of conventional particle accelerators, which have been important in fundamental physics 

and other applications, large attention is attracted to the co-called dielectric laser 

accelerators (DLA) [144, 145]. DLAs are micrometer-scale dielectric structures excited 

by external laser light sources. Due to modern nanofabrication techniques, they can be 

compact, inexpensive and still provide efficient acceleration due to high electric-field 

gradients [146]. These devices provide acceleration by using the intensive near fields of 

laser-driven periodic dielectric structures, i.e. gratings. Additionally, they can 

incorporate Bragg reflectors to eliminate the incident wave transmission through the 

grating. A promising material for the DLA is silicon, which has high dielectric 

permittivity (ε ≈ 12) and good thermal conductivity. Besides, its nanofabrication 

infrastructure is well advanced as examined in [147].  

Most popular DLA designs are based on various gratings of several hundred 

circular silicon nanorods [147,148]. They are less expensive and simpler than others and 

can be mass-produced using available nanofabrication methods. Consequently, 

electromagnetic analysis of such gratings is interesting and important. 

For the DLA designing, it is crucial to have a high electric field gradient near the 

grating in the beam motion direction. On nanoscale, this can be achieved in the natural-

mode resonances using the high-index materials like silicon. Still, there is an alternative: 

plasmon modes supported by the graphene-covered low-index scatterers. Therefore, we 
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chose the research configuration of two dielectric rods covered with graphene shown in 

Fig. 4.8, as a two-section element of a larger grating of DLA. 

 

 
 

Fig. 4.8 Cross-sectional geometry of a dimer of in line graphene-covered circular 

dielectric nanowires, excited by a modulated electron beam moving above them 

 

Fig. 4.8 presents the considered geometry of the DR problem. Identical dielectric 

nanowires hare relative permittivity ε, radius a, and the distance between their axes is L. 

The harmonically modulated, in density, beam of electrons flows at the distance h from 

the nanorod axes with the relative velocity v = βc (β < 1). In Fig. 4.8, we explain the 

Cartesian and the local ( , )r   polar coordinates used in the derivations. The charge 

density of the beam as a sheet current flowing along the straight trajectory and the field 

of the electron beam are as in (1.1) and (1.2).  

If we consider that the beam velocity is constant, then the DR analysis is reduced 

to the classical 2-D wave-scattering boundary-value problem, with (1.2) as the incident 

field. It includes the Helmholtz equation with the corresponding wavenumbers in partial 

domains, the graphene boundary conditions at the rod contours, the Sommerfeld 

radiation condition at infinity, and the condition of the local power finiteness. This set 

provides uniqueness of the DR problem solution. Then the basic equations are similar to 

the “BPM-like” graphene covered dielectric nanowires, however, with different right-

hand part terms because of the different excitation, 
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The scattering and absorption cross sections spectra in the infrared range for two 

distances between the nanorods are pictured in Fig. 4.9.  

 

 

 

Fig. 4.9 The spectra of t TSCS and TACS for configuration in Fig 4.8. The wire radius 

is 10 nm, the beam velocity β is 0.5, the impact parameter is 5 nm, the chemical 

potential is 10 eV, the electron relaxation time is 1 ps, T = 300 K, the dielectric 

permittivity is 2.4, and the distance L is 30 nm and 50 nm 

They show a number of the natural-mode resonances. We remind that the dimer 
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modes are conveniently called ‘supermodes’ as they are built on the modes of each 

circular graphene-covered rod, coupled in one of the four possible ways in the sense of 

symmetry or anti-symmetry. These quartets form two doublets of closely spaced 

supermodes – see also Chapter 5.  

The presence of supermode quartets is revealed in Fig 4.10a, where the 

resonances decompose to four peaks, well visible on the zooms of ACS plots around the 

frequencies of the dipole supermodes P1. In contrast, in Fig. 4.10b, where similar zooms 

around the frequencies of the quadrupole supermodes P2 are shown, a split of the 

resonance peaks inside the doublets is not visible. This is caused by the smaller 

frequency separation of the P2 supermodes in each doublet. As one can see, the change 

of the distance between the wires shifts the resonance frequencies. The larger the L, the 

closer the frequencies of all peaks to the frequency of the plasmon mode of the single 

circular wire covered with graphene. 

 

  

(a) (b) 

 

Fig. 4.10 Zooms of the spectra of TSCS and ACS in Fig 4.8 around the P1 (a) and P2 

(b) supermodes  

 

In order to visualize the symmetry classes of the resonating supermodes, we 

present the near magnetic field patterns and the far field angular patterns of the 
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supermodes P2, see Fig. 4.11. 

One can see different orientation of the field maxima (red spots) that corresponds 

to different supermode symmetry classes. Each wire displays four bright spots of the 

field maxima. Here, only two of the possible four symmetry orientations appear due to 

unresolved resonances of the P2 peaks. 

Their Q-factors are not large enough to distinguish all symmetry classes. For the 

panel (a), the resonance is on the x-even/y-even P2 supermode at the frequency of 

433.12 THz. For the panel (b), the resonance is on the x-odd/y-odd P2 supermode at 

447.72 THz. Note that in-resonance field magnitude maxima are around 25 times larger 

than the magnetic-field maximum for the same beam in the free space. This 

enhancement can be exploited in DLA design. However, the field high values decay 

quickly off the rod boundaries as typical for the plasmon modes. The rate of decay is 

close to exponential near the boundary, however, transforms to 1/2r−  in the far zone. 

 

 

 

(a) 

 

 

 

 

 

(b) 

 
 

 

Fig. 4.11 Quadrupole supermode in-resonance near magnetic fields and far field 

patterns of graphene-covered wire dimer. The wire and beam parameters are the same 

as in Fig. 4.8, and the distance between the wires is 30 nm 



129  

4.3.2 DR effect for finite graphene-covered nanowire grating  

 

The studied DR configuration is shown in Fig. 4.12. This is a finite-periodic array 

made of M identical circular dielectric wires covered with graphene. It is excited by the 

modulated electron beam field (1.2). 

The DR problem formulation is similar to two-wire case studied in subsection 

4.3.1. The final matrix equation has M x M block form and can be derived from the 

general case of Chapter 2. It belongs to the Fredholm second kind type. 

 

 
 

 

Fig. 4.12 Cross-sectional geometry of a grating of M circular dielectric nanowires 

coated with graphene and excited by a modulated electron beam 

 

The IR-range spectra of TSCS associated with DR of the modulated electron 

beam with β = 0.5 and impact parameter h = 5 nm exciting the gratings made of 10, 50 

and 100 graphene-covered nanowires are shown in Fig. 4.13. All the graphene and array 

parameters are indicated above the figure.  
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Fig. 4.13 The spectra of DR TSCS for the grating of M graphene-covered nanowire 

gratings excited by the modulated electron beam 

 

Note that in this numerical example the grating period is L = 2 µm while the 

radius of wires is a = 10 nm, and the wavelength varies from 1.03 to 0.94 µm so that 

,a L  . From the comparison of the curves, computed with the block truncations 

numbers Ntr = 1 and 5 (not shown), it follows that 3 correct digits in TSCS of the 200-

wavelength scatterer are obtained with account of only three multipoles, m = 0 and ±1. 

The spectra demonstrate two natural-mode resonances. The most impressive 

resonance peak of TSCS is seen at 313.4 THz and easily identified as associated to the 

transversal “dipole-type” (of the azimuthal index m =1) plasmon mode of the circular 

graphene cover of each individual nanowire. Indeed, the plasmon-mode P1 frequencies 

are given by (4.14), that yields 315 THz. In the considered case of nanowire grating, 

where we have M optically coupled wires, the plasmon supermodes form 2M-multiplets. 

However, as ,a L  , the separation between the supermodes, in frequency, is 

extremely small. This is the reason that only one such peak is visible in Fig. 4.13. Note 
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that the magnitude of this peak, if normalized by M, does not depend on the number of 

wires (all the curves overlap completely). 

The other resonance peak is found at 300 THz and shows opposite dynamics – 

both its magnitude and sharpness strongly depend on M. The nature of this resonance is 

revealed after plotting the far-field angular DR pattern – see Fig. 4.14(a). 

 

 

  

(a) (b) 

 

Fig. 4.14 The far-field patterns of DR for the gratings of M graphene-covered 

nanowires excited by the modulated electron beam at the resonance frequencies of 

300 THz (a) and 313.4 THz (b) 

 

They demonstrate two narrow lobes in the grazing directions, 0 and 180o and 

three even narrower lobes of DR in each half-space. These DR lobes are easily 

identified as corresponding to the directions of the radiation of the Floquet field 

harmonics of the corresponding infinite grating of the same period. Indeed, those 

directions are given by the equations [2-4], 

 

cos / 1/ , 0, 1, 2,...n n L n  = + =                                (4.24)  
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that yields 
2 3 4 51 , 61 , 90 , 118o o o o   − − − −= = = = . As could be expected, all lobes get 

sharper with larger M. Additionally, 
6cos 1.031 1− =   that means that in the infinite 

grating -6-th harmonic is just below cut-off. Indeed, if M gets larger, then this lobe gets 

narrower and disappears. Now, note that the -2-nd harmonic is just above the cut-off. 

This means that the frequency of the M-dependent resonance is very close to the 

Rayleigh Anomalies (RA) of the -2-nd and -6-th order. Recalling that according to [131, 

136, 137] there exist a lattice-mode pole just below each RA frequency, we can 

conclude that the first resonance in Fig. 4.13 is associated with the lattice mode. On 

finite gratings, these resonances also exist and their Q-factors raise if the number M gets 

larger – see, e.g. [136, 137]. The DR patterns in Fig. 4.14(b) correspond to the plasmon 

mode resonance, the frequency of which is far from any RA frequency. 

Then we investigate the influence of the wire radius by choosing a =10, 50 ,100 

nm for the M =100 grating.  Figs. 4.15 and 4.16 present the per-wire TSCS in the broad 

frequency range where we can identify plasmon modes denoted as Pm and lattice 

modes denoted as Lm (close to the RA frequencies).  

 
 

Fig. 4.15 The spectra of DR TSCS for the grating of M=100 graphene-covered 

dielectric nanowire gratings excited by the modulated electron beam for three radii 

a=10 nm, 50 nm and 100 nm and the chemical potential μc = 10 eV 
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Fig. 4.16 The same as Fig. 4.15 for the chemical potential 0.5c =  eV 
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Fig. 4.17 The near magnetic field patterns in the P1 plasmon-mode resonances marked 

in for Fig. 4.15, near the first, the central-left and the last wires 
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In Fig. 4.17, we present the near magnetic field patterns for the grating of Fig. 

4.12, in the resonance on the P1 mode, near the first, the central-left and the last 

nanowire. The P1 pattern is better visible in the case of the smallest wire radius, 

because here the Q-factor of P1 is the largest.  

 

Conclusions to Chapter 4 

 

- We have analyzed, using a dedicated numerical code based on the reduction of 

the DR problem to the matrix equation having guaranteed convergence, the 2-D model 

of BPM designed of twin graphene-coated circular dielectric nanowires. This analysis 

has demonstrated that such a dimer can serve as an infrared-range sensor of the beam 

shift from the prescribed trajectory. If such a shift appears, then new resonances on the 

formerly “dark” supermodes start shining in the spectral dependence of the diffraction 

radiation. To have these new peaks well resolved, the graphene chemical potential 

should be rather high, around or above 0.5 eV. Such high values that can be achieved 

with appropriate DC biasing. 

- Besides, we have presented basic equations and sample numerical results for the 

DR from two in-line dielectric circular nanowires with graphene covers exited by the 

modulated electron beam. The resonances on the plasmon supermodes of different 

symmetries have been discussed. This analysis can be useful in the design of DLA 

sections made of low-index dielectrics, however, covered with graphene. 

- Moreover, we have demonstrated two types of resonance effects in the DR of a 

modulated electron beam flowing over a sparse finite grating of M >>1 circular 

dielectric nanowires with graphene covers. Namely, the resonances on the plasmon 

modes of each wire and on the lattice modes of the whole grating have been discussed. 

This investigation can be helpful in the design of DLA sections based on dielectric 

elements covered with graphene. 
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CHAPTER 5 THRESHOLD CONDITIONS FOR SINGLE AND TWIN 

GRAPHENE-COVERED QUANTUM NANOWIRE LASERS 

 

This chapter is dedicated to the implementation of the Lasing Eigenvalue Problem 

(LEP) approach for study of the electromagnetic field in the presence of a circular 

quantum wire (QW) made of a gain material and wrapped in graphene cover and a 

dimer of two identical graphene-covered QWs, at the threshold of stationary emission. 

As explained in section 1.6, LEP delivers the mode-specific eigenvalue pairs, namely 

the frequencies and the threshold values of the QW gain index for the plasmon and the 

wire modes of such nanolasers. In our analysis, we use quantum Kubo formalism for the 

graphene conductivity and classical Maxwell boundary-value problem for the field 

functions. The materials of Chapter 5 have been published in works [A1, A10, A12, 

A14]. 

The goal of this chapter to study the plasmon and non-plasmon mode threshold 

conditions of the nanolasers made of a circular QW covered with graphene and a pair of 

such QWs (see Fig. 5.1).  

 

 

 

 

 

(a) (b) 

 

Fig. 5.1 Cross-sectional geometry of a single (a) and a dimer (b) of identical gain-

material circular nanowires with graphene covers and the notations used 
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Besides, we plan to investigate their dependences on the QW and graphene 

parameters. Our instrument is the LEP approach [149] (see also section 1.6), which has 

been already applied to several types of microlasers in [111, 150, 151] and silver 

nanostrip and nanotube plasmonic lasers in [152,153]. LEP is a full-wave semi-classical 

electromagnetics eigenvalue problem, tailored to extract the mode-specific wavelengths, 

together with the associated threshold material gain values, of not attenuating in time 

emission. Complete mathematical grounding of LEP can be found in [154]. 

Note that the laser configuration in Fig. 5.1 (a) was considered recently in [155] 

using essentially a LEP-like approach, namely, looking for the conditions that turn the 

imaginary part of the natural frequency of the plasmon mode P1 to zero. 

 

5.1 Modes of single graphene-coated quantum nanowire laser 

 

5.1.1 Lasing Eigenvalue Problem statement 

 

Consider a single-wire laser, the active region of which is a graphene-covered 

circular QW, as shown in Fig. 5.1a, in the free space. We denote the radius of QW as a 

and assign the indices 1 and 2 to the inner (r < a) and outer (r > a) domains of QW, 

respectively. 

We assume that the wire is infinite along the z-axis and that the electromagnetic 

field does not depend on z, with time dependence 
i te −

, where the frequency is real, 

Re = . Thanks to this, we consider a 2-D problem in the plane of the wire cross 

section, where we introduce the polar coordinates, ( , )r  . As graphene is known to 

support the H-polarized plasmon modes, we consider only this case. Here, the electric 

and magnetic fields have components ( , ,0)rE E=E  and (0,0, )zH=H , respectively. 

Our goal is to study the conditions, under which non-zero time-harmonic EM field can 

exist in such configuration, in the absence of the incident field.  

The function ( , )zH r   must satisfy the Helmholtz equation, ( )2

1,2 ( , ) 0zk H r  + =  
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outside the QW boundary ( )r a , with the wavenumbers 
1k k= and 

2 ,k k=  where 

/k c=  and the QW material as nonmagnetic, so that its dielectric constant is connected 

to the refractive index ν as 
2 = . At the graphene-covered QW boundary, the field 

function must satisfy the same "resistive" boundary conditions as in                                  

section 4.1,  

 

0, 2 ( ),int ext int ext int ext

z zE E E E ZZ H H r a   = + = − = ,                   (5.1) 

 

where Z is the surface impedance of graphene, normalized by the free-space impedance 

Z0; it has the following form: 1

0( )Z Z −= , with σ being the complex surface 

conductivity. Besides, thanks to real k, the field function must satisfy the Sommerfeld 

radiation condition at infinity, and, additionally, the condition of the local field power 

finiteness. Note also that  ( )0 1,2/ / ,int,ext int,ext

zE Z ik H r =   from the Maxwell equations. 

We consider the complex refractive index of the QW gain material to be       

i  = − , where   is known refractive index and 0   is unknown threshold gain 

index. For simplicity, we will also assume that the material gain is uniformly distributed 

throughout the QW and does not depend on the frequency. In real life, such a QW can 

be a glass-like material doped with erbium ions, to provide the gain in the infrared 

range. In the sub-THz range, similar properties are known for the andalusite crystalline 

material doped with iron. 

Mathematically, within the LEP we look for such pairs of real numbers ( , )s sk   

that generate non-zero functions { , }s sE H  (s = 1,2, …), which solve the formulated 

above boundary-value problem for the Maxwell equations. That is, we look for the 

frequencies and gain-index thresholds of laser modes as eigenvalue pairs. It is worth to 

note that the other LEP-like formulations exist, see [113-117], where the threshold gain 

is characterized with Im 0   instead of   or with the product, g k= . The graphene’s 

conductivity has been discussed in section 1.4 and will be used in the further analysi. 
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5.1.2 Characteristic equations for the single-wire modes 

 

The magnetic field inside and outside the wire can be expanded as Fourier series 

in the angular exponents, taking into account the radiation condition at infinity and 

condition of local field power finiteness near the center of wire, 

 

0(1)

( ),
( , ) cos( ) sin( ),

( ),

m mint,ext

z

m m m

x J kr r a
H r m  or m

y H kr r a


  



=

 
=  

 
                   (5.2) 

  

where xm and ym are unknown coefficients, while (.)mJ  and (.)mH  are the Bessel and the 

Hankel 1-st kind cylindrical functions, respectively. The orthogonality and 

completeness of the set of functions cos/ sin( ), (0),1,2,...m m =  on the circle allow us 

to apply the conditions (5.1) in term-by-term manner. 

Thus, the separation of variables leads to splitting of the modes into independent 

orthogonal families by the azimuthal index m, and all modes with m > 0 are double 

degenerate. 

After some algebra, independent full-wave transcendental equations for the 

modes of each index, m = 0,1,2..., can be written as 

 

( ) ( ) ( ) ( ) ( ) ( )( , ; , , ) 0m m m m m m mD k a Z J k a H ka iZ J k a H ka J k a H ka        = + − =   ,          

(5.3) 

 

Note that if 0Z =  or | | ,Z →  then, respectively, (5.3) turns to the characteristic 

equation for the modes of the circular cavity with PEC wall or the circular dielectric rod 

in the free space. 

We emphasize that the complex calculus theorems guarantee that the roots of 

(5.3) are discrete on the plane ( , )k  . Besides, each of them is a continuous function of a, 

α and Z and cannot appear or disappear on that plane except at k = 0 and infinity. 
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It is interesting that those roots of (5.3) that correspond to the plasmon modes can 

be determined analytically, at least in the frequency domain where the intraband 

conductivity, 
intra , dominates over the interband conductivity, 

inter  (see section 1.4). 

In this domain, 
inter  can be neglected, and the normalized surface impedance (or 

resistivity) of graphene takes the form,  

 

( ) ( )
1 1

0 intra( ) 1/Z Z i   
− − = −  ,                                        (5.4) 

 

where   is given by equation (4.13). 

Now, we can consider the circular graphene shell as a traveling wave resonator, 

which supports the transversal plasmon modes (similarly to silver nanotube plasmon 

modes [95]). Then, neglecting the curvature of the shell, and hence the radiation losses, 

approximate characteristic equation for these modes is 

 

, 1,2,...plasg a m m= =                                            (5.5) 

 

where plasg  is the propagation constant (eigen-wavenumber) of the plasmon guided 

wave on the infinite flat graphene monolayer placed between two dielectrics, known in 

the analytical form from [156]. Namely, if | | 1,Z  then  

 

( 1) (1)plasg ik Z O + +                                             (5.6) 

 

On substituting (5.6) and (5.4) into (5.5), a complex-valued equation is obtained,  

 

( 1) ( , ) (1) , 1,2,...ika Z k O m m + + = =                                 (5.7) 

 

which can be solved analytically in the same approximation. Interestingly, equation 
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(5.7) also follows from (5.3) if 1ka   and | | 1k a   [159]. The real part of this 

equation allows to find approximate expression for the emission frequencies of the 

transversal plasmon modes of the closed graphene shell, which covers circular QW, 

 

1/2

2( 1)

P

m

m
k

a c

 
  + 

                                             (5.8) 

 

Note that this value is the same as the real part of the complex eigenfrequency in 

the analysis of natural modes of the passive graphene-covered circular dielectric wire 

(section 4.1). 

One can see that in the considered approximation, the emission frequencies do not 

depend of the electron relaxation time and are proportional to the square-roots of the 

chemical potential of graphene (if 
c Bk T  ) and inverse QW radius. This opens up the 

possibility of developing a laser that is continuously tuned in a fairly wide range of 

frequencies. 

Furthermore, the imaginary part of the same equation delivers the threshold 

values of the gain index, 

 

( )
3/2

2 1/21 1

2

P

m

a

m c




 

+  
  

 
                                  (5.9) 

 

Thus, the lasing thresholds of the plasmon modes are inversely proportional to the 

electron relaxation time and the square roots of the mode azimuth index and the 

chemical potential (if 
c Bk T  ). Besides, they scale down as the square root of the 

wire radius, although one should keep in mind that (5.8) is derived neglecting the 

radiation losses of the plasmons.  

Interestingly, frequently used in the laser physics quantity of the product of (5.8) 

and (5.9), which is the gain per wavelength, does not depend, in the considered 
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approximation, on the QW radius, graphene chemical potential and mode index,  

 

2 1 Re 1
or (Im )

2

P P P P

m m m mk k
c c

 
 

  

+ +
                                   (5.10) 

 

Therefore, within this approximation, all plasmon modes under any variations of 

the mentioned parameters stay at the same hyperbolic trajectory, 1( , )k C    −=  , which 

is controlled only by the electron relaxation time, τ, and wire refractive index, α. This 

feature is, obviously, the consequence of the fact that the simplified Kubo expression 

for graphene’s surface impedance (5.4) suggests that both its real and imaginary parts 

are proportional to ( , )c T , hence their ratio scales as  . 

 

5.1.3 Full-wave analysis of single-wire laser mode properties 

 

In this subsection, we present the results of numerical study of the LEP eigenpairs 

for the single-QW graphene-coated laser using the full-wave equations (5.3) and full 

Kubo conductivity (1.3) - (1.5).  In Fig. 5.2, the lasing frequencies and thresholds are 

shown versus the wire radius, which varies from 50 nm to 100 μm, at µc = 0.25 eV, τ = 

0.5 ps and α = 1.55. One can see that the plasmon modes have lower frequencies and 

thresholds than the first QW modes H01 and H11 provided that the QW radius is smaller 

than 10 μm, while in thicker wires they become comparable.  

The based on the Drude term approximations (5.7) and (5.8) for P

mk  and P

m  are 

also shown by the dotted curves in Fig. 1.3. Note that they are in very good agreement 

with full-wave computations of the roots of (5.3), performed by the iterative root-search 

method, where (5.7) and (5.8) are the initial-guess values. As expected, the agreement 

worsens at low frequencies where | |Z  gets so small that the radiation losses become 

comparable to the ohmic losses and at very high frequencies where the contribution of 

the interband conductivity cannot be neglected. 
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Fig. 5.2 Frequencies and thresholds versus the wire radius a for the plasmon modes 

P1, P2, P3 and P10 and the perturbed dielectric wire modes H01 and H11 for the single-

wire laser with parameters of graphene µc = 0.25 eV, τ = 0.5 ps and α = 1.55 

 

Further, to make clearer the comparison of the lasing conditions, we plot the 

trajectories of the modes, considered in Fig. 5.2, on the plane (f, γ), where f = kc/2γ, 

under the variation of the chemical potential of graphene (Fig. 5.3), electron relaxation 

time (Fig. 5.4), and QW refractive index (Fig. 5.5).  
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Fig. 5.3 Trajectories of the plasmon modes Pm and perturbed dielectric wire modes Hnm 

of the single-wire laser with parameters а = 50 µm (a), 10 µm (b) and 1 µm (c), under 

the variation of the chemical potential of graphene. Other parameters are as marked 

 

Here, we choose the wire radius to be 50 μm, 10 μm and 1 μm and assume that 

the QW gain material refractive index and the graphene parameters are as indicated in 

figures. We emphasize that these trajectories have been computed from the full-wave 

transcendental equations (5.3) and full Kubo expressions (1.3)-(1.5) for several values 

of the azimuth index m. For comparison, the trajectories based on approximations (5.8) 

and (5.9) are also presented as dashed lines. 
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Fig. 5.4 Trajectories of the plasmon modes Pm and wire modes Hnm of the single-wire 

laser with parameters а = 50 µm (a), 10 µm (b) and 1 µm (c), under the variation of the 

electron relaxation time. Other parameters are as marked 

 

As one can see, only the plasmon-mode frequencies are well tunable using the 

graphene chemical potential. Making the wire thinner than 10 μm shifts QW modes far to 

the blue side of spectrum. The larger the τ, the lower the thresholds of all modes; note 

that if τ varies from realistic 1 ps to fantastic 10 μs (marked by arrow), then the P1 

threshold is almost stable that points out to the possible radiation loss level. Again, the 

approximations of (5.8) and (5.9), given by the dashed curves, are amazingly accurate 

except of the low-terahertz and higher than 35 THz frequencies. 
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Fig. 5.5 Trajectories of plasmon modes Pm and wire modes Hnm of the single-wire laser 

with radii а = 50 µm (a), 10 µm (b) and 1 µm (c), under the variation of the refractive 

index of QW. Other parameters are as marked 

 

5.2 Supermodes of twin graphene-coated quantum nanowire laser 

 

In this section, we present the results of full-wave numerical analysis of the lasing 

frequencies and thresholds of the dimer laser supermodes. 

In the case of dimer as it is shown in Fig. 5.1 (b), we introduce the global 

Cartesian and polar coordinates, with the origins at the midpoint between QW axes so 
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that ( , ) ( , )r x y r = = , where cos , sinx r y r = = , and two local CS with the origins 

at the wire axes. Then, the associated LEP formulation is similar to single-wire case, 

with the conditions (5.1) imposed at each wire’s boundary, jr a=  (j = 1,2). Important 

circumstance is that the dimer-wire configuration has two lines of symmetry, that is the 

x and y axes. 

 

5.2.1 Full-wave determinantal equations of four symmetry classes of dimer 

supermodes 

 

As if has been discussed in Chapter 4, in the dimer case all eigenmodes are in fact 

"supermodes," built on the modes of each individual circular wire and optically 

connected in four possible ways dictated by the two-fold symmetry. Hence, supermodes 

make quartets instead of pairs because each mode of a stand-alone circular wire is 

doubly degenerate; this degeneracy is lifted when another circular wire appears. Only 

the supermodes built of axially symmetric modes of each wire make doublets. Each 

family of supermodes has either the symmetry or the anti-symmetry of its field with 

respect to each line of symmetry; they can be conveniently denoted as “x-even, y-even” 

(EE), “x-even, y-odd” (EO), “x-odd, у-odd” (ОО), and “x-odd, y-even” (OE). The 

“even/odd” conditions, respectively, can be expressed as  

 

           0 at 0 or 0 at 0; 0 at 0 or 0z z
z

H H
y x H y x

x y

 
= = = = = = =

 
                    (5.11) 

 

To reduce the dimer LEP to determinantal characteristic equations, we follow the 

same approach as in section 4.3 and use the Fourier expansions of the field function in 

the local polar coordinates, the addition theorems for the cylindrical functions, and the 

conditions (5.11). Here, we look for the magnetic field function as 
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( ), (1. ), 1,2,

, (2),

int j

z j

z ext

z j

H r j j
H

H r

  =
= 



                                     (5.12) 

 

It is convenient to introduce new variables / 2.j j  = +  Then the internal and 

external fields, which have the y-even and y-odd symmetry can be expanded as follows: 

 

int( ) ( )

0

( , ) ( ) ( ), 1,2,j j

n n j n j

n

H r y J k r S j  


+

=

= =                     (5.13) 

( )

1,2 0

( , ) ( ) ( ),ext j

n n j n j

j n

H r z H kr S 




= =

=                                   (5.14) 

 

where we use the following notations: ( ) cosmS m + =  and ( ) sin ,mS m − = ( )
n

J   and 

( )nH   are the Bessel and Hankel (first kind) functions, and (1,2)

ny  and (1,2)

nz are unknown 

coefficients to be found. This representation of the function H satisfies the Helmholtz 

equation, the Sommerfeld radiation condition, the local power finiteness condition, and 

the y-even/y-odd symmetry conditions that is (5.11) at 0.x =   

On substituting (5.13) and (5.14) into the graphene boundary conditions (5.1), 

using the Graph addition theorem for the Hankel functions, and introducing the 

notations, 

 

   / , ( ) / , ( )

, 0(1) , 0(1)
, ,E O E O E O E O

mn mnm n m n
I A A



= =
= =                          (5.15) 

 /0, ( ) (1,2)

1,2 0(1)
,E E O

n n
X x



=
=                                               (5.16) 

(1,2) (1,2) 1, !(2 / )n

n n n nx z w w n ka−= =                                        (5.17) 

 

where 
mn  is the Kroenecker symbol, we exclude the unknowns ( )

2

pqX  because from 

(5.11) it follows that  
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/ , / , / , / ,

1 2 1 2,E O E E O E E O O E O OX X X X=  =                              (5.18) 

 

and obtain the following four matrix equations for ( )

1

pqX : 

x-even/y-even (EE) and x-odd/y-even (OE) mode classes, 

 

( )/ , / ,

1 0,E O E E O EI A X+ =                                                 (5.19)  

/ , 1 1 ( ) ( )E O E m n m n

mn n m m m n m n mA V w D H kL i H kL i − − − − +

− +
 =  +                        (5.20) 

 

and x-even/y-odd (EO) and x-odd/y-odd (OO) mode classes, 

 

( )/ , / ,

1 0,E O O E O OI A X+ =                                                 (5.21) 

/ , 1 1 ( ) ( 1) ( )E O O m n m m n

mn m m m n m n mA V w D H kL i H kL i− − − +

− +
 = − −                    (5.22) 

 

where 
mD  is given by (5.2), 

0 01/ 2, 1n  = =  and  

                              

 ( ) ( ) ( ) ( ) ( ) ( ) ,m m m m m m mV J ka J k a iZ J ka J k a J ka J k a      = − −               (5.23) 

 

The large-index asymptotics of the cylindrical functions allow to establish that 

each of equations (5.19) and (5.21) is a Fredholm second kind matrix equation in the 

space of sequences 
2 2l l . Thanks to this, their infinite-dimension determinants exist as 

functions of all parameters of the problem. Besides, thanks to the Fredholm theorems 

generalized for the operators [157], the characteristic numbers of (5.19) and (5.21) are 

discrete on the plane ( , )k   and depend continuously on the geometrical and material 

parameters of the problem. Moreover, this guarantees that the approximate 

characteristic numbers, found from the truncated determinantal equations,  
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 ( , )

, 0(1)
Det ( , ) 0, , , ,

trN
p q

mn mn m n
A k p q E O 

=
− = = ,                     (5.24) 

 

converge to the exact values for progressively larger truncation numbers Ntr [158].  

To illustrate the splitting of the dimer plasmon modes into quartets, we present in 

Fig. 5.6 the near magnetic field patterns of four supermodes P1 of the EE, OE, EO and 

OO symmetry classes. Note that the symmetry (anti-symmetry) of the H-field entails 

anti-symmetry (symmetry) of the E-field pattern. 

 

  

f= 4.56 THz, γ=0.072 

(a) 

          f= 4.55 THz, γ=0.08 

                   (b) 

  

f= 4.25 THz, γ=0.1 

(c) 

          f= 4.26 THz, γ=0.089 

                     (d) 

Fig. 5.6 The near magnetic field patterns of four supermodes P1 of the EE (a), OE (b), 

EO (c), and OO (d) symmetry classes. The threshold values of the frequency of 

emission and the gain index are given below each picture 
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Note that the matrix elements in (5.24) need no numerical integrations, and hence 

can be easily computed with machine precision. 

It should be emphasized that the scaling of the unknowns with the aid of the 

weight 
nw  (5.17) is crucially important. Without this scaling, the matrix elements 

would decay with n → however grow up exponentially with m→ that prohibits, 

mathematically, the truncation of the matrix. 

 

5.2.2 Dimer-wire laser mode properties 

 

In Fig. 5.7, we show the trajectories of the dimer plasmon supermode quartets on 

the plane (f, γ), under the variation of the chemical potential of graphene. Here, two 

supermode quartets are present, built on the plasmon modes P1 and P2 in each wire, for 

two values of the inter-wire separation, 100 nm for panel (a) and 1 μm for panel (b). 

Although being split here, supermode trajectories, in general, are still close to the 

hyperbola defined by equation (5.9). Only the “dipole” supermodes ( , )

1

p qP  display 

deviations, which become smaller if the separation gets larger. 

Finally, in Fig. 5.8 we present the mode trajectories of three supermode quartets, 

( , )

1,2,3

p qP , under the variation of the inter-wire separation distance from 10 nm to 1 μm, for 

two values of the chemical potential, 0.2 eV for panel (a) and 0.5 eV for panel (b).  

As expected, if the wires move away from each other, then all four modes of a 

quartet migrate to the same “destination point,” which is the single-wire mode 

frequency and threshold (marked with stars). 

The largest splits and the slowest pace of reaching the limit are again associated 

with the “dipole” supermodes, 
( , )

1

p qP . This can be explained by the fact that the 

compression of the plasmon-mode fields to the graphene shell increases with the mode 

index, m, therefore the distance needed for efficient coupling gets smaller. Note that, in 

all examples, the supermodes built on the wire modes, H01 and H11, are off the studied 
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range of frequencies, from the blue side. Note that one or two supermodes of a quartet 

can have lower thresholds than the similar plasmon mode of the single nanowire. 

 

 

 

 

 

(a) 

 

 

 

 

 

 

(b) 

 

 

Fig. 5.7 Trajectories of the plasmon supermodes Pm of the dimer-wire laser with 

parameters а = 1 μm and separation distances s = 100 nm (a) and 1 μm (b), under the 

variation of the chemical potential of graphene. Other parameters are as marked 
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(a) 

 

 

 

 

 

 

(b) 

 

 

 

Fig. 5.8 Trajectories of the plasmon supermodes Pm of the dimer-wire laser with 

parameters а = 1 μm and the chemical potential of graphene μc = 0.2 eV (a) and                

0.5 eV (b), under the variation of the inter-wire separation, s  
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Conclusions to Chapter 5 

 

- We have presented the computational electromagnetic analysis of the threshold 

conditions for the modes of the plasmonic graphene nanolasers based on the circular 

QW wrapped in graphene and a dimer of such wires. Using the Kubo formalism and 

separation of variables, adapted to the LEP approach, we have derived full-wave 

transcendental and determinantal equations for the transversal mode emission 

frequencies and the material gain thresholds in the single wire and dimer cases, 

respectively. These equations are easily coded in straightforward manner and computed 

with machine precision, making the use of commercial codes unnecessary. 

- Besides, for a single-wire laser we have derived approximate analytical 

expressions for the plasmon-mode frequencies and thresholds, neglecting the radiation 

losses and only using the Drude term (i.e. the intraband component) in the description of 

graphene’s surface conductivity. These expressions are in excellent agreement with full-

wave computations in very wide range of the wire radii and frequencies. As new result, 

we have found that the product of any plasmon-mode frequency and threshold is close 

to a constant, defined by the QW refractive index and electron relaxation time, only. 

- If the QW radius is smaller than 10 μm, then the plasmon modes or supermodes 

have lower frequencies and thresholds than the ‘parasitic” QW modes, however, in 

thicker wires they can be comparable. As expected, only the plasmon-mode 

characteristics can be well controlled with the aid of the graphene chemical potential. In 

the dimer, the plasmon supermodes form tight quartets, approaching the single-wire 

mode characteristics if the inter-wire separation becomes comparable to the radius. 

Whatever the separation, the EE supermode, featuring the x-even and y-even H-field, 

shows the threshold, lower than of the same mode in a single graphene-covered QW. 

This can be explained by the fact that this supermode has zero E field at the x and y 

axes. We believe that these results bring a clearer vision of how to build single-mode 

graphene-covered plasmonic nanolasers and their arrays. 
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CONCLUSIONS 

 

In the dissertation, a mathematically grounded numerical algorithm with 

guaranteed convergence has been developed for the study of the DR effect for various 

configurations of circular nanowires and nanotubes made of dielectric, silver, and 

graphene excited by the modulated beam of charged particles. The considered DR 

problems have been either solved analytically - for single wires, or reduced to the a 

Fredholm second-kind matrix equation of the block type, which can be solved 

numerically with controlled accuracy up to machine precision – for multiple wires. This 

has allowed us to investigate the spectral characteristics of the DR-caused EM field 

scattering and absorption by finite configurations of circular nanowires and nanotubes, 

excited by the modulated beams of charged particles, as well as the eigenmodes of such 

nanowire configurations.  

The main conclusions of the work can be formulated as follows: 

• if the particle beam trajectory is shifted from the central (symmetric) 

position between the twin nanowires, then the DR scattering and absorption spectra 

display appearance of previously absent resonances, associated with the dimer 

supermodes whose fields are orthogonal, in symmetry, to the beam field; the intensities 

of new peaks are proportional of the beam displacement or its angular shift; 

• the above-mentioned effect has been found for the high-Q supermodes of 

the dimers of high refractive-index dielectric wires, thin noble-metal nanotubes, and 

graphene-covered wires at the high enough values of graphene’s chemical potential; 

• to observe the mentioned effect, the frequencies of the modes of different 

azimuthal orders in single circular resonator, used in the dimer, have to be well 

separated from each other; therefore, it is not observed for the plasmon modes of the 

dimers of solid circular noble-metal nanowires; 

• in the analysis of DR from sparse finite periodic arrays of many graphene-

covered nanowires, the dominant feature in the frequency spectra of DR power are the 

resonances on the plasmon modes of each wire and the lattice modes of the whole array; 
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the latter resonance peak intensities strongly depend on the number of wires; 

• the Optical Theorem (OT), known previously in the plane-wave scattering, 

has been adapted to the DR effect: that entails introduction of the complex-valued 

angles of incidence; the derived expression can be used for partial validation of 

numerical codes; in the thesis, OT has been satisfied with machine precision; 

• in the analysis of the lasing threshold conditions of the modes of single 

circular graphene-covered active wire, we have found that if the wire radius is smaller 

than 10 μm, then the “working” plasmon modes are much lower, both in the frequencies 

and in the threshold values of the gain in active region, than the “parasitic” dielectric 

wire modes; otherwise, they become comparable; 

• if the separation between the wires in graphene-covered active circular 

nanowire dimer becomes larger than their radius, then all four plasmon supermodes of 

the lowest types form very tight quartets both in frequencies and in thresholds; 

• the obtained results of numerical analysis of the DR-caused scattering and 

absorption characteristics, far and near field patterns of the wave emission from charged 

particle beam moving near various nanowire scatterers and gratings of them have 

fundamental significance and wide range of applications. The latter includes BPM and 

DLA designs. The analysis of thresholds conditions for the plasmon modes of the 

considered in the thesis nanolasers can help in the creation of new, more efficient 

nanolasers; 

• the developed computational codes of the DR-caused scattering and 

absorption characteristics permit using them as a core of the software for numerical 

optimization of optical configurations, key elements of which are circular nanowires. 
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